
ESD-TR-88-264 3451-4-010/2

United States Air Force Program Office

< Guide to Ada, Edition 54

CHRISTINE AUSNIT
ERNESTO GUERRIERI
PHILIP HOOD
NANCY INGWERSEN

SofTech, Inc.
460 Totten Pond Road
Waltham, MA 02254

31 March 1988

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Uh~

Prepared For

ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS.C0OMAND
DEPUTY FOR ADVANCED DECISION SYSTEMS
HANSCOM AIR FORCE BASE, MASSACHUSETTS 01731

LEGAL NOTICE

When U. S. Government drawings, specifications or other data are used for any
purpose other than a definitely related government procurement operation, the
government thereby incurs no responsibility nor any obligation whatsoever; and
the fact that the government may have formulated, furnished, or in any way sup-
plied the said drawings, specifications, or other data is not to be regarded by
implication or otherwise as in any manner licensing the holder or any other person
or conveying any rights or permission to manufacture, use, or sell any patented
invention that may In any way be related thereto.

OTHER NOTICES

Do not return this copy. Retain or destroy.

This technical report has been reviewed and is approved for publication.

_V

MARK V. ZIEMBA, ILt, USAF CHARLES J. RYAN, Maj, USAF
Project Manager, Project 2526 Program Manager, Computer Resource Management
Computer Resource Management Technology Program (PE 64740F)
Technology Program (PE 64740F) Deputy Commander for Advanced Decision Systems

FOR THE COMMANDER

Deputy Commander for AdvancedDecision Systems

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE

Form Approved

REPORT DOCUMENTATION PAGE OMBNo. 0704-0188

la REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS
Unclassified

2a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT
Approved for Public Release; Distribution

2b DECLASSIFICATION / DOWNGRADING SCHEDULE Unlimited

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

3451I-4-010/2 ESD-TR-88- 264

6a. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(If applicable)

SofTech, inc. HQ Electronic Systems Division(AVSE)

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

460 Totten Pond Road Hanscom AFB

Waltham, MA 02254 Massachusetts, 01731-5000

8a. NAME OF FUNDING/SPONSORiNG 8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATON Deputy for (If applicable) F33600-87-D--3

Advanced Decision Systems ESD/AVSE

Bc ADDRESS(City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

Hanscom AFB PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO NO NO ACCESSION NO".assachusetts, 01731-5000I I

1 TITLE (Include Security Classification)

United States Air Force Program Office Guide to Ada, Edition 4

T2 PERSONAL AUTHOR(S)

C. Ausnit. E. Guerrieri. P_ Hood. N_ Inawerstn
13a TYPE OF REPORT 13b TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT

Teqh 1l FROM TO 9 MArh

16 SUPPLEMENTARY NOTATION

17 COSAT: CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROuP Ada, policy, simulation, benchmarks, real-time processing,

distributed processing

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

The purpose of the Program Office Guide to Ada is to discuss issues affecting the
selection development and maintenance of systems whose goftware is written in the
Ada language. Each edition focuses on a different set of topics and their implications
for managers.
This edition focuses on Ada usage issues, policy updates, progress on benchmarks, the
use of Ada in simulation, lessons learned on Ada projects, distributed processing,

real-time issues, and contractor evaluation.

20 DISTRIBUTION) AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
C-UNCLASSIFIEDIUNLIMITED r SAME AS RPT D OTIC USERS Unclassified

22a NAME OF RESPONSIBLE INDIVIDUAL '22b TELEPHONE (Include Area Code) 22c OFFICE SYMBO

M. V. Ziemba. lLt. USAF (67 77-2656 ESD/AVSR

DD Form 1473, JUN 86 Previous editions are obsolete SECURITY CLASSIFICATION OF THfS PAGE

Unclassified

EXECUTIVE SUMMARY

This report is the fourth of four Editions of the Program Office Guide to Ada. Col-
lectively, these editions complement the Program Manager's Guide to Ada, ESD-TR-85-

159, dated May 1985. This effort was sponsored by the Air Force Computer Resource
Management Technology Program., Program Element 64740F, Project 2526, Software

Engineering Tools and Methods. The SEI (Software Engineering Institute) has an on-
going effort to study Ada related issues and will publish handbooks on their findings on

a periodic basis.

The goal of the four supplemental editions has been to discuss the transition of

.\da int, the life cycle phases, into different classes of software, and into the acquisition

process. Software engineering concepts, methods, standards, and environments are dis-
cussed extensively. The relationship between Ada and software engineering is explored

b,,th from the viewpoint of usage and tools. Management concerns on cost, policy, and

pr,,gress evaluation are also reviewed.

['dition I addressed: policy, run-time efficiency, run-time support environment cus-

tornization. training. Ada program design languages, and conversion of non-Ada code.

Edition 2 addressed: DoD Standards 2167 and 2168, guidelines for proposal evalua-

tion. reusability and portability considerations, software costing models, benchmarking

efforts, and Ada software libraries.

Edition 3 addressed: maintenance of the Ada Standard, Ada Education and Train-

ing Study, program proving and verification, environments, tools, interfaces, and computer-

aided soft ware engineering.

Edition .1 discusses:

" Ada usage issues.

* policy updates,

" progress on benchmarks.

" the use of Ada in simulation,

" lessons learned on Ada projects,

* distributed processing,

" real-time issues, and

" contractor evaluation.

lii

A well-written Ada program is supposed to satisfy criteria such as readability, modu-

larity, and extendability. The proper use of language constructs and coding style enables

the code to meet these criteria. Moreover, practical experience on Ada projects to date

has also validated the fact that Ada "delivers" on many of the software engineering
concepts it is intended to support.

Ada technology has greatly improved during the last few years. Inefficiency and tool

immaturity have been the major complaints of Ada users to date. Vendors have passed
the first milestone, validation, and are now concentrating on run-time system support

and performance goals. Standardized sets of benchmark suites are becoming available,
enabling more meaningful comparisons of Ada products. As experience with benchnarks

continues to grow, guidelines are emerging on their installation and execution.

Software engineers are using Ada on a wide variety of projects. including real-time
systems, distributed systems, and simulation. Ada supports both traditional real-time

development and new, more flexible approaches. Some designs may require customized

run-time systems, providing support for the unit of distribution, internode communi-
cation and error handling, a run-time system scheduler, and discrete event simulation.
Research shows promise of a hybrid method of development that combines the advan

tages of the two existing methods.

In 1987 a major policy milestone was achieved with the signing of Department of
Defense (DoD) Directives 3405.1 and 3405.2, mandating the use of Ada for all defense-

related software. The implementation of this policy should serve as a clear signal within
the l)oD and industry that the time for transition to Ada is now. The fact that contrac-

tors must now use Ada has motivated studies in software productivity metrics to aid ill
contractor evaluation.

iv

FOREWORD

This report is the fourth in a series of four editions that supplement the Program
Manager's Guide io Ada, ESD-TR-85-159, published by The Computer Resource Man-
agement Technology Program in May, 1985. The introduction of Ada as the mandated
high order language for Mission Critical Computer Programming in the Department of
I)efense has generated a need for clear, concise information for program managers and
others concerned with cost, schedule, and performance in the application of this new

language.

The intent of this series is to bring Program Office personnel up to date on facts
presented in the original Program Manager's Guide, as well as to provide a more
rounded discussion on certain subjects presented in the original guide. This series
of four reports is designed for the program manager and his technical staff. It is
recommended that the four editions comprising this report be kept with the original
Program Manager's Guide to Ada. forming a ready reference to Ada and Ada-related

Ip"ICS.

V

ACKNOWLEDGEMENTS

This report is sponsored by the Air Force Computer Resource Management lech-
nology Program. PE 64740F, Project 2526 (Software Engineering '[ools and Methods),
ESD/AVS, Hanscom Air Force Base, Massachusetts.

The Computer Resource Management Technology Program is the Air Force engi-
neering development program to develop and transfer into active use the technology.
tools, and techniques needed to cope with the explosive growth in Air Force systems
that use computer resources. The goals of the program are to: (a) provide for the tran-
sition of computer system developments in laboratories, industry, and academia to Air
Force systems; (b) develop and apply software acquisition management techniques to re-
duce life-cycle costs: (c) provide improved software design tools: (d) address the various
problems associated with computer security; (e) develop advanced software engineering
tools. techniques, and systems: (f) support the implementation of high order languages.
e.g.. Ada: (g) address human engineering for computer systems: and (h) develop and
apply computer simulation techniques for the acquisition process.

It would be impossible to list all of the contributors, but special recognitioI 1111151
be given to: Capt Jack Boepple, Dr. Norman H. Cohen. Major Charles Engle. John T.
Foreman, Larry Gresham. and Marlene Hazle.

vi

Contents

Executive Summary ii

Foreword V

Acknowledgements Vi

22 Ada Usage Issues 22-1

22.1 Ada's Support for Software Engineering 22-1

22.1.1 Modular Structure. 22-2

22.1.2 Separate Compilation. 22-3

22.1.3 Abstraction. 22-4

22.1.4 Structured Control. 22-6

22.1.5 Reusability. 22-7

22.1.6 Environment specific features 22-7

22.2 Programming Style 22-8

22.2.1 Style Attributes. 22-9

22.2.2 Naming Conventions. 22-12

22.2.3 Tools 22-13

23 Policy Updates 23-1

23.1 DoD Directive Status. 23-1

23.1.1 Directive 3405.1. 23-1

23.1.2 Directive 340.5.2. 23-2

23.1.3 Impact of these Directives. 23-3

23.2 Air Force Policies 23-4

23.2.1 AFR 800-14 23-4

23.2.2 AFR 700-9. 23-4

23.3 Policy Changes since Previous Editions 23-5

24 Benchmarks 24-1

24.1 Purpose and Description 24-1

Vjj

24.2 Major Existing Benchmarks. 24-2

24.2.1 Performance Issues Working Group (PIWG). 24-2

24.2.2 University of Michigan 2--2

24.2.3 Whetstone 2.1-3

2-1.2.1I Dhrvst one 21 3

21.3 Additional W~ork 21 1

24.3.1 Production QualitY Ada Compiler Report. 21- 4

24.3.2 SE] Benichmarks for Embedded Real-Time Systems. 21 7

24.3.3 Real-time. Run-time Environment Studies. 21 6

2.3.-I Ada Run-Time Environment Working Group (ARTEWC) 1-6

24.3.5 Commercial Ada U'sers Working Group (CA UWG) 24-7

2-1.3.6 Armonics Benchmarks 4.7

25 Simulation and Emulation of Systems in Ada 25-1
25.1 Simulation vs. Prototps....... 2-

25.2 On-going Simulation W~ork 25-2

26 Lessons Learned on Ada Projects 26-1

26.1 Metrics 26-1

26.1.1 Distribution of Effort in Different P~hases. 26 2

26.1.2 Productivity 26-2

26.2 Language Objectives. 26 3

26.2.1 Design. 26-4

26.2.2 Reusability. 26-5

26.2.3 Portability 26-6

26.2.4 Language Use. 6 7

26.2.5 Testing 26-8

26.2.6 Maintainability 26-9

26.3 Tools and Training. 26-9

26.3.1 Impact and Adequacy of Tools. 26-10

26.3.2 Ada and Software Engineering Training. 26-11

Viii

26.-4 M anagem ent26-11

26.4.1 Cost Estimation. 26-12

26.4.2 Resources Needed 26-12

26.4.3 Receptiveness. 26-12

26.4.4 Ada Experience Forums 26-13

27 Distributed Processing 27-1

27.1 Current IDeveloprnent Issues. 27-1

27.2 Single IPrograni Models. 27-3

28 Real-Timne Issues in Ada 28-1

2S.1I Ev-aluation of Cyclic Executiv-e Approach 28-1

28.1.1 Description. 28-1

28.1.2 Strengths and Weaknesses 28-3

28.2 Evaluation of Data D~riven Approaches 28-4

28.2.1 Description. 28-4

28.2.2 Strengths and Weaknesses 28-5

28.3 Temiporal Models 28-5

28.3. 1 Processing Models. 28-5

28.3.2 Transformational Techniques 28-6

28.4 Run- Timne Env,,ironment Technology. 28-6

29 Contractor Evaluation 29-1

29.1 Software Engineering Exercise. 29-1

29.2 Ada Decision Matrix. 29-2

29.3 Process Ev-aluation. 29-3

29.3.1 Metrics 29-3

29.3.2 Coniractor Capabilities. 29-4

A Appendix: References A-i

B Appendix: Bibliography B-1

ix

C Appendix: Points of Contact for Ada Information C-1

Section 22

Ada Usage Issues

To use the Ada standard to its fullest, it is important to understand the philosophy

behind the development of Ada. Good usage of Ada requires disciplined methodologies'.
using Ada features towards the application of the methodologies, and good programming

style. This section covers how Ada supports modern software engineering T :actices. wilh
out discussing Ada svntax. Guidelines for Ada programming style are also presented.

22.1 Ada's Suppcrt for Software Engineering

Ada was designed to be a general-purpose language, facilitating tile development

of reliable and inainiainablc soft ware. It was designed for embedded computer systems.
though it has been pr,,vow useful in other applications, such as data processing. The

language provides (omipile time detection of many coding errors and encourages modern
software engineering practices to ensure reliable code. Readability is emphasized through

programming conventions and proper use of its constructs.

Ada is a large and powerful language. A programmer need not use all of the features
of the language in every program. It is both normal and appropriate to use just a subset

of the features. To use Ada t(- iTs fullest, a programmer needs proper training and tools.

Along with discussing the features particular to Ada. their advantages and disad-
vantages will be pointed out. Run-time efficiency, discussed in Edition 1. Section 3.2.

will not be further discussed here. This section is not meant to be a catalog of Ada

constructs: only selected features are discussed. These features are organized by topic

as follows:

" Modular structure.

" Separate compilation.

* Abstraction.

" Structured control.

" Reusahility, and

" Fivironment specific features.

Pr ,gramming methudologies have been discussed in Edition 1, Section 5, Ada Program Design

I.anguage. Edition 2. Section 8. DoD-STD-2167 and Methodologies for Use with Ada; and Edition 2.
Secti, n 1I. Reusability and P ,rtabilitv.

22-1

The most versatile language feature is the package, different aspects of which are illus-
trated throughout this section.

22.1.1 Modular Structure

in many languages including Ada, a large program will be broken down into nu-
merous modules to make it easier to understand. Modules usually perform a specific
function that can be separate from the rest of the program. If modifications need to be
made, modularity makes it easier to isolate the changes. The Ada view of the world is
not a strict hierarchy, though hierarchies are permitted and encouraged. It allows for
different threads of control as well as a combination of a network and a layered struclurc.
Ada provides several kinds of program units that aid modularity, namely, subprograms.
tasks, packages. and generics.

Subpr'oqramins may be either procedures or functions. They are similar to subroutines
in other languages. A task is similar to a subprogram except it provides separate parallel
threads of control, often needed in real-time or concurrent processing. IPackaqCs are the
basic unit for structuring programs. A package is usually a grouping of similar program
elements that may le used by other parts of the program. For example. a package may
conain procedures, functions, type declarations, exception declarations, and tasks. A
g(r nric unit can either be a package or a subprogram. A generic unit is a template from
which a non-generic unit can be obtained.

Ada is richer in programming structure constructs than other languages. which
resillts in a great degree of control over the program name space 2 , more manageable

parallel software development, and also a reduction in the "ripple effect" of errors. It
is generally thought that better structured code leads to better quality code. because
it is easier to read and maintain. The existence of the different kinds of program units
makes it important to master new structuring techniques and the interrelationships of
the units.

There are some similarities and also some fundamental differences between the
classes of program units. The similarities are that each have a sp(cification and a bodYt.
The specification satisfies a "need to know" on the caller's behalf. It defines the interface
to the other program units. In Ada, the information needed to call another unit is
intentionally isolated from the implementation of that unit. The purpose is to minimize
"coupling- and increase the independence of the units. The theory behind it is to force
the programmer to think in terms of the calling interfacts. The body contains the
i m plement ation.

2 Program name space refers to the set of names of program entities (variables, procedures, exception,
etc.) which are accessible (can be named) from a particular point in the program execution Modern
software engineering practices encourage restricting the name space in order to isolate the effect of
program changes.

22-2

Packages are a relatively new concept; from a structure point of view, packages

permit an easy way to split a program into smaller, understandable units. Packages
promote maintainability bN localizing changes, restricting the impact of a change. This
makes maintenance easier because as long as the interface (the package specification)
does not change, no other programs are affected by a modification to the corresponding

package body.

The ability to import a package is distinct from the capability to include a file
containing data and other routines. In other languages, include files are generally just
textual expansions at the specified location. In Ada however, packages provide a much

more selective mechanism because you bring in only the specification, although the body
of course will be automatically brought in so that the executable code is available at run-
time. Unlike traditional include files, packages provide the user with a very fine degree
of control over what data,'functions are known and callable, mainly because a package
can be imported deep in the hierarchy of the program, so that higher-level modules are
unaware of it. It can be difficult to understand the static nature of packages. They
are containers rat her then executable units, yet the compiler generates code for them.
Unlike traditional units, packages are not directly callable entities, though by importing
them one can call those entities defined in the package specification.

One of the hard thing, to learn about designing in Ada is how to allocate declara-

tions and code into different packages. Because packages are such a basic, fundamental
unit, the software allocatioii to different packages is effectively the program design. The

software should be allocated to minimize dependencies bet ween packages, partly to limit

recompilation when modifying package specifications.

22.1.2 Separate Compilation

Generally, separate component compilation in other languages is best described as
being independent from other component compilations because there is no cross checking

and external references are generated for entities not self-contained. However, Ada
with a program library, provides separate compilation where each component's external

references are checked against the component containing the references in the library.
This separate compilation is further enhanced by having the specification and body of
a component as individually compilable library units. The implication is that after the

high-level design establishes some top-level packages, the software development of the

modules can then proceed largely in parallel. Separately corppilable units (of which
library units are a subset) include package specifications, packages bodies, procedures,
functions. generic units. and task bodies. Ada includes a mechanism to break out smaller,
separately compilable units from a larger enclosing one.

The specifications can be compiled separately to check the validity of the interfaces.

22-3

As a result, Ada identifies errors during the design, which is less costly than discovering
and correcting errors in the integration or testing phase.

The compilation of any separately compiled unit may depend on multiple program
units. The significance of this lies with the ability to control the name space. Rather
than import (include) a program unit at the top level of the hierarchy, it can be imported
such that it is only known to a low-level subunit.

Other languages, such as C, provide independent compilation of modules which are
compilable in any order. Independent compilation produces external references, without
performing the static ,compile-time) interface checking that separate compilation in Ada
does. Because of the static interface checking between the component being compiled
and the components in the library, the programmer must pay attention to the order in
which he compiles the modules, although this is enforced by the compiler and/or linker.
The static interface checking forces the programmer to validate the design specifications
before proceeding with the package body.

22.1.3 Abstraction

Ada allows for the abstraction of data and algorithms. Features permit both data
and process encapsulation.

Ada is a strongly typed language. All objects must be declared and have a specific
type. As in other languages, there are predefined types. Ada also allows the user to define
new types. User-defined types can have specific ranges and specified accuracy values,
Being able to define the range of a type allows the user to specify design constraints.
For example, a body temperature thermometer could be represented by a real number
type from 85.0 to 110.0 with increments of 0.1. An advantage of strong typing is that
some errors in passing parameters and in performing comparisons and computations are
identified at compile time, rather than during execution. One of the potential pitfalls of
strong typing is for a user to define too many numeric types and then need to perform
type conversions to be able to perform operations on values in the different types. This
can be avoided by creating a few basic numeric types and then using these types as the
base for user-defined subtypes, enabling direct comparisons. A good up front design
could avoid these problems.

Understanding types in Ada may be difficult for programmers coming from a FOR-
TRAN or assembler background. It is likely that there will be confusion between types
and objects in the beginning. Furthermore, programmers may have trouble with the
concept of naming a value, as used in declaring enumeration types.

Packages allow the user to define abstract data types, one of the foundations of
object-oriented programming. All of the data in the specification will be visible to a
program that uses the package. A package specification can include the type declarations

22-4

for the variables used in the package, the names and parameters of the procedures and
functions contained in the package, the exceptions that are defined in the package, other

packages and tasks.

Besides controlling the scope by grouping all of the declarations together in a pack-
age specification, the programmer can extend the level of abstraction by "hiding" the
definition of a type from a calling program by declaring it a private type. This class of
declaration imposes restrictions on the use of the type. Although a programmer want-

ing to use the package can "'see" the private type declaration, his code cannot "use"
the information in this declaration. This is advantageous because if the calling program

doesn't know how the type is defined and cannot see how" the related subprograms are
implemented. then the (ode cannot be based on an implementation detail. This is an
advantage because, laler, if the implementation in the package is changed. the calling
program will still be valid 3 .

Packages support an abstraction by grouping related subprograms. The package
body has the full code for procedure, function bodies and other information that the
caller of the package entities does riot need to know about. Often packages contain all
tie possible operations for a specific type. The users of the package do not know how the
package is implemented'. so they cani not make decisions based on the implementation.

The Ada language permits the ovtrloading of subprograms. Overloading is when
two or more distinct subprograms are identified by the same names. This means that
the naming of routines is much more flexible and, hence, procedure and function names

are often more easily understood. Ada also allows the overloading of enumeration lit-
erals. Overloading is a new name for a concept that has existed to a degree in other
languages. However, overloads in other languages have been system defined, rather than
user-defined. I/O and numeric facilities have always had the same name or symbol.
regardless of the parameter tYpe. An example is A -B. If the parameters A and B are
numeric then addition is performed. However if A and B are strings then concatenation

is performed.

Overloading is useful when a user has subprograms, either functions or procedures,

'The calling program may need to be recompiled (a disadvantage), but it will not need to be modified
(a greater advantage).

4Users here refer to the scope ,f the program unit importing the package. The programmer can, in
all likelihood, print out the source file for the package body. The point is that he may only write code
which depends on the package specification and which can reference entities named in the specification
but not entities declared in the bodv. This is a source of confusion for Ada novices because they will
find subprogram declarations both in the specification and the body. More subprograms are often
declared in the body than in the specification for reasons of modularity and readability: these "hidden"
subprograms encapsulate parts of the algorithm needed to implement the subprograms declared in the
specification.

'it should be noted that package names cannot be overloaded. Variables in two different packages
may, however, have the same name because they exist in different name spaces.

22-5

that perform similar actions but on different types. For instance, it is common to have a
sort routine for several different types, such as integers and floating point. Overloading
permits both of the routines to be called "Sort", instead of Sort-Int and Sort-Float.
However there are limits to overloading, the compiler must be able to determine which
subprogram to use.

Predefined operators in Ada can also be overloaded. This is good when the user

defines a new type and wants to use the commonly recognized operators, such as addition
and multiplication. This provides a very powerful facility for common numeric constructs
based on matrices and vectors. A function which overloads a predefined operator may
be called using either infix notation or the regular function call notation. Being able to
use overloaded operators with infix notation increases readability.

22.1.4 Structured Control

Ada provides statements to handle program flow control, real-lime actions, and
exceptions. There are many statements in Ada that are similar to statements in other
languages. Many of them have stricter rules associated with them to increase program
logic control and increase compile-time detection of errors.

Consider. for example, the case statement. Every possible value of an object in a

case statement must be provided an option or a semantic error will be flagged during
compilation. The others clause can be used to cover any value that is not explicitly
provided an option.

The goto statement is allowed in Ada, although use of it is strongly discouraged.
Inappropriate use of a goto in Ada. will raise errors upon compilation.

Tasks permit a user to execute programs sirrultaneously. Tasks provide a user wit h
parallel threads of control. With multiprocessors they may provide actual concurrency.,
and apparent concurrency with a single processor. The tasks can communicate with
each other, and wait for each other when necessary. Through task rendezvous. Ada
provides a mechanism for synchronization and data transmission.

Ada provides ways to resolve unexpected situations, which increases the reliability
of the system. In Ada these exceptional occurrences are referred to as exceptions. Ex-
ceptions stop the sequential execution and pass the control to a different location in the
program. Exceptions can be used as a mechanism to support a fault-tolerant system.
Statements to rectify an unexpected situation are located a * the end of program blocks.
These statements are called exception handlers. Exception handlers can solve the prob-
lem, pass the exception to a higher level (i.e., the calling routine) or do both. If an
exception remains unresolved, is propagated to the main program and is not resolved in
the main program, then execution of the program is terminated. Within exception han-
dlers, messages can be displayed, errors can be resolved, and files can be closed to permit

22-6

clean exiting of the program. There are several predefined exceptions. For example, one

would be raised upon an attempt to perform an operation with a zero divisor. Users

can also define and raise their own exceptions. One of the advantages of user-defined

exceptions is to give the programmer control over the granularity of exceptions.

In a very loose fashion, the exception facility is analogous to a very structured

goto to the extent that when an exception is raised, control flow must be transferred

to the exception handler at the end of the current program block or to a higher level.

Moreover at the end of the handler, control must be transferred immediately outside the

block of the handler. In general, predefined exceptions should not be raised explicitly

by a programmer because there is no guarantee that the exception was caused by the

programmer-specified condition rather than some other unforeseen run-time violation.

In developing packages, the designer should think carefully about what error con-

ditions might occur (such as stack overflow, validation failure) and whether or not he

should name these conditions (i.e., declare exceptions) to allow programs using this

package to trap for this exception and choose their most appropriate course of action.

A detailed discussion of exception usage is found in ADA85 .

22.1.5 Reusability

Usually reusable components are self contained units, that are easily transferable to

other programs. Packages are good for grouping related subprograms. Often a package

will contain all of the subprograms for a user-defined type.

Another aspect of Ada that supports reusability is a generic unit. A 9qrneric unit

is a template of either a package or subprogram, from which a non-generic unit can be

obtained. They are best used for programs units which replicate a single algorithm for

several different types of data. An example for a generic package would be a sort routine.

The same basic program could be used for integers and reals. So to use the routine, a

copy of the generic unit is generated for the specific type to be used with the program.

Generics need not be found only at the utility routine level. The top-level design for a

suibsystem could be written as a set of generic packages.

22.1.6 Environment specific features

Motivated by the needs of the embedded systems community, the Ada features

machine code insertions and pragma interface, provide ways to interface with other

high order languages, assembly language, machine-specific language, and the underlying

hardware. Interfacing with other software, such as databases, is discussed in Edition 3,

Section 20.

In Ada. the compiler determines where the code will be stored, how types and

22-7

objects will be represented and stored, etc. Representation clauses and representation

pragmas permit the user to vary this. Representation clauses work with four types of

clauses: length clauses, enumeration clauses, record representation clauses, and address
clauses.

The length clause is used to specify the amount of memory the compiler should use
in representing objects of a type. The enumeration representation clause permits the

user to specify the internal codes for an enumeration type literal. The internal codes
specified do not have to be consecutive, though gaps can cause operations like finding the
succeeding value to be less efficient. The record representation clausc allows the user to
specify the bit-by-bit layout of each component of a record to be specified. The address

clause permits the user to specify the storage address of an object, subprogram, package,

or task. It can also associate a hardware interrupt with a task entry. This clause is

useful in embedded applications where the memory location of called subprograms must
be known.

The interaction between the representation specifications and the use of other lan-

guage features can create some difficult cases for the compiler that can potentially result

in inefficient code. Good practice would be to isolate the representation specification

items in a package body, and provide an interface (i.e., the bit handling operations)
through the package specification.

22.2 Programming Style

Unlike COBOl. and some other languages. Ada is free format. I here are no liMe
numbers, and statements may start in any column. Therefore the programming style

for Ada is left up to the user. DoD-STD-2167A has an appendix for programming style

that contractors should default to, or use as the basis for defining their own.

The most important point to make about programming style for Ada is that the

programming style chosen should be consistent. Among other goals, the Ada language
was designed to be reusable and maintainable, both of which require that a person

unfamiliar with a program be able to pick it up and understand what is being done.

A project must establish coding standards and styles right from the beginning. It
is especially important to establish the standards early in the life cycle if the design
is being done in Ada. Written standards allow Quality Assurance to have an explicit

domain to check.

Programming style is characterized by the format of the code and the naming
conventions used. Both aspects are discussed in the following subsections, as well as the

types of tools which support good programming style.

22-8

22.2.1 Style Attributes

Programmers accustomed to other languages might have problems adjusting to
Ada's free format aspect, i.e., there is unlearning and relearning that needs to be done.
Considering that Ada is basically free format, some programmers may complain about
having to follow certain conventions, but it is important because style has a direct
relation to readability. Also with the increasing availability of syntax-directed editors
and other tools, there is no reason for not having properly and consistently styled code.

There are some generally accepted programming conventions. These are:

" Provide a structured header comment,

a Indent nested structures,

" Differentiate reserved words from program variables with the use of upper and

lower case letters.

* Use whitespace (blank lines) to enhance readability.

* Use variable names that are self-explanatory, and

a Ise comments to increase understandability only where necessary.

Figures I and 2 show an example program which follows the general conventions
listed above. augmented by the following:

e Reserved words appear in lower case letters,

* The first letter of each non-reserved word is capitalized, except for prepositions,

@ "-O" in 10 package names is capitalize, i general, abbreviations are capitalized.

* In a subprogram structure, the following words are aligned:

- with,

- procedure (or function).

- begin,

- end,

e The subprogram name is repeated after the word "end" and is included as a com-

ment after the word "begin", and

22-9

// AT : Jane Doe rebcuary 12, 1986
-//

--// PM1OU: Insaet a name and corresponding telephone number in
// the directory.

--//

-//Z1 RM POOMM DGtANM in

-- / Find - procedure which locates an entry In the directory.
-- // Sae Directocy - procedure which stores directory in a file.
-// Dicectocy - global data structure of dicectocy information
-- // cecords.

// Naimm Size - maxims number of records that can be stored
-// In the directory.
-// Current Size - curent number of records contained in the
1// directocy.

-// UammeType - type for representing the name entry in directory

-// records.
// Telepbone Mamber Typq - type for repcesenting the telephone

-// mer entry in the directocy cecocds.
-// !ndez_ Type - subtype for representing indices into the directory.
-//

/ CO OWITS:

-// None.

sepate(Directorym"aqer)
pcOe-dre Insert (name in ameType;

?elepboae Number : in Telephone Nuemberype:
Ouplicate_Present : in out Boolean:

Space Available : in out Boolean) is

M ntryEocation : Index_?ype;

begin - Insert

- check to see if room exists for additional entry
SpaceAvailabLe := CurrentSize < mlaximumSize:

Find (Name, Entry_r ocation, DuplicatePresent):

if not DuplicatePresent then

if SpaceAvailable then -- add entry

Current -Length :2 CucrentLength * 1:
icectocy(Cutrent _LenqthkMame :- Name;
oirectory(CucrentLenqth .Telephone_Number :z Telephone-Number:

end if:

end if:

Save Oiectocy:

end Insect:

Figure 1: Example of coding style

22-10

// AMW: Jane oe reruary 1.2. L964
-//

-// Pa=: I ert a a em and corresponding teLephone number in
-// the diJectocy.
-//

L// Y P ANC 3M K:

-// pcocedure which Locates an entry in the directocy.
-// savu ou3svmi
-// procedure which stOrtes directory in a file.
-II UZ3ETc~

-// globaL data structure of directory information records.

-II inezuma number of records that can be stored in the diectory.
-I CtE SIZZ
- y Current number of records contained in the directory.

-// type fo representinq the name entry in directory reccde.

// type for represntinq the telephone number entry in the
-1/ directory records.

-// subtype for represent inq indices into the directory.

/I CLO UUF"S:

ssprpeat(D12h€irMnyUIN;)
procedure Imam

(RAW in NM Typ:
TEL M_ L .n M I j4UIM_"YPE:
OPLICA13PlUS in out UOOLMZA:

P ACEZAVA1rALZ in out MOMOLJU
is

Er'IT-WaCATICEI : IMMl- T'Yl

begin - IMMT

- chect to see itc oc exists fo additional entry
SPA€.AV rAMZ :- C3U3I 'r SIZE < MZIMSEZZ:

rim (tNAU.

DOIPZCAEP1UZW!

Lf Crot OUPLCAT-PUEUV
then

LCf SPACE AVAILABLE
then - add entry

CU3UWTLZW= CURLEMMT
OZRWTOiY(COEUUM _.D2T). MANE :M NAME:
DIKaCTOE? (CUOE3M -TEL UZPWMUEN=U : - ?.UUOU461U

end L.f:

end if:

and LJSTIMM :

Figure 2: Example of alternate coding style

22-11

I
-!

* If all elements of a statement cannot fit well on one line, they are continued on the

next line and are aligned so that they are easily readable (frequently parameters

in a subprogram declaration will each be listed on a separat: line, with the colons

aligned).

Other programmers follow a variation of these guidelines, depending on personal

and project preference. Some of the frequent differences are in:

* Capitalization of all user defined identifiers,

* Varying the degree of indentation, and

9 Varying the alignment of control structures.

22.2.2 Naming Conventions

The Ada language does not set a specified length for identifiers, though most im-
plementations limit them to the source program's line length. For identifiers that are

made up of more than one word, an underscore is frequently used between the words.

Since the length of identifiers is only limited by a program's line length, abbreviating
w'ords is strongly discouraged. except for abbreviations that are universally understood or
used project wide. There are two frequently used methods for abbreviating words. The

methods are dropping the vowels from the word, and truncating the word. Whichever

method is used it should be fairly consistent for the project. A detailed discussion of
naming conventions may be found in A)A85.

It is usually easier to decipher code if ii reads like English. Effective use of naming

conventions can make comments unnecessary. Some naming conventions that aid in this

are:

e Objects are usually named with nouns. Boolean objects are named as if they ask
a question.

* Procedures are named with verbs to denote that an action is occurring, and

* Functions are named with a noun or a conditional clause if a Boolean result is

returned.

Organizations have and should set up guidelines for yarning conventions. For in-
stance. in addition to standard program layouts, one such guide prescribes FOF87,:

" Individual suffixes to identify data type names, package names and object names,
and

" The use of full names when referring to entities inside of package specifications.

22-12

22.2.3 Tools

There are many tools available through vendors to aid users and increase program-
mer productivity. Two types of tools designed to aid users in writing well styled code

are syntax-directed editors and pretty printers.

Syntax-directed editors aid programmers by automating some of the program code

entry. This can be accomplished through the use of code templates and/or keyboard
macros. Syntax-directed editors usually fill in the semi-colons and various parts of Ada
constructs. The editors embody the syntax rules for Ada. The user can spend more
energy writing the code arid less on the proper syntax. Some of these tools also provide
a way to pre-process the code into a structured format and to check for errors.

Several programming environments provide graphical ways to design the system

and have tools that automatically generate program code. (See Edition 2, Section 8.4
for a discussion of some specific methods and tools.) Some systems generate frames

(i.e.. the general layout of the programs), while other systems produce compilable code.
Often the user will then use an editor, such as a syntax-directed editor, to complete
what has been generated from the graphical design by filling in type declarations and
other details. Some of these tools also tie directly into document generators, so that
there is a way to maintain consistency between specifications and code.

Pretty Printers format source code so that it is ni,re readable. They ensure the
uniformity of code style and format. Some pretty printers will accept user-defined format

specifications.

Tools are being developed rapidly and it would be difficult to provide a complete
list of all vendor offerings- Vendors exhibit frequently at the major Ada conferences.

such as: SIGAda, AdaJU.C. and Ada Expo.

22-13

Section 23

Policy Updates

The signing of Department of Defense (DoD) Directives 3405.1 and 3405.2 man-

dating the use of Ada marks a policy milestone. All the services must now write an

implementation plan consistent with these directives, modifying or creating regulations
as needed in order to be compliant with the Ada mandate. The Air Force regulations

addressing computer resources are undergoing revision to be compliant with these di-

rectives.

The Ada Joint Program Office (AJPO) remains the focal point for Ada technology.

The AJPO is responsible for tile validation procedures, as discussed in Edition 1., Section
3.1. \ alidated compilers will now have a special certification stamp.

23.1 DoD Directive Status

Two directives requiring the use of Ada in all Dol) software were signed by Deputy

Secretary of Defense Villiam H. Taft., IV. Directive 3405.1. dated 2 %pril 1987, discusses

computer programming language policy for the development and support of all DoD

software. Directive 3405.2. dated 30 March. 1987. addresses the use of Ada on all
mission critical software.

23.1.1 Directive 3405.1

Directive 3405.1 states the DoD policy that Ada is required both for mission critical

and for all other applications. The stated goal is to have Ada become the single, common

computer language for all defense software. Major software upgrades must also be done
in Ada. Programs already in full-scale development may continue to use a language

other than Ada through deployment and maintenance. When another approved higher
order language is more cost-effective over the application's life cycle, this language may

also be used in lieu of Ada.

Approved higher order languages are:

Ada ANSI/MIL-STD-1815A-1983 (FIPS 119)
C/ATLAS IEEE STD 716-1985

COBOL ANSI X3.23-1985 (FIPS 21-2)

C MS-2M NAVSEA 0967LP-598-2210-1982
CMS-2Y NAVSEA Manual M-5049, M-5045. M-5044-1981
FORTRAN ANSI X3.9-1978 (FIPS 69-1)

23-1

JOVIAL (J73) MIL-STD-1589C (USAF)
Minimal BASIC ANSI X3.60-1978 (FIPS 68-1)
Pascal ANSI/IEEE 770X3.97-1983 (FIPS 109)
SPL/1 SPL/1 Language Reference Manual,

Intermetrics Report No. 172-1

National Bureau of Standards (NBS) Special Publication 500-117 provides further guid-
ance in the selection of an appropriate high order language. Directive 3405.1 supersedes
DoD Instruction 5000.31 ("Interim List of Approved Higher Order Programming Lan-
guages (IIOL)").

Directive 3405.1 states an order of preference for software: 1) Commercial-Off-The-
Shelf (COTS) packages and advanced software technology; 2) Ada-based software and
tools: and 3, approved standard HOLs. The decision of which type of software to be
used should be based on an analysis of the life cycle costs and the impact on competition.

Responsibilities for the implementation of the policy outlined in 3105.1 are allocated
both to the Assistant Secretary of Defense (Comptroller) (ASD(C)) and to the Under
Secretary of Defense (Acquisition) (USD(A)). Both the ASD(C) and USD(A) are re-
sponsible for the insertion of modern software technology in automated data processing
and mission critical systems respectively. The ASD(C) should define researcli areas for
information system needs and provide these topics to the USD(A), who is charged with
establishing software technology research programs. The USD(A) is also tasked with
managing the Ada program and the maintenance of the Ada language. Furthermore.
the head of each DoD component is charged with developing an implementation plan to
address the issues in the directive, designating a language-control agent. implementing
a waiver process to resolve requests for non-approved HOLs and establishing evaluation.
training, and education programs for advanced software technologies.

23.1.2 Directive 3405.2

Directive 3405.2 mandates the use of both the Ada language and an Ada-based
program design language (PDL), preferably a compilable one, on all software "integral to
weapon systems." In other words, all mission critical computer software must be written
in Ada and compiled by a validated Ada compiler. Ada is the preferred language for
hardware test languages for Unit Under Test equipment. It is also the preferred language
for unmodified COTS software used by the DoD. The use of Dol)-STD-2167 and DoD
Handbook-281 is strongly recommended; the software engineering principles described
therein are to be applied to the production of defense software.

As with Directive 3405.1, Ada is not required for programs which are already in
full-scale development, unless the software is undergoing a major upgrade. Directive
3405.2 defines a major upgrade as the redesign or addition of more than one-third the

23-2

soft ware.

The VSD(A) is tasked with coordinating the implementation of this directive. The
heads of DoD components must develop a comprehensive Ada implementation plan that

addresses their organization's traisition plan to adopt Ada. for example. training plans,
regulations. etc. Furthermore, each l) ,l) component must have both an Ada executive
official (focal point) to monitor Ada programs and an Ada waiver control officer.

l)irective 3-40,5.2 designates the AJPO as the controlling agent of the MIL STD Ada
(Sec Edition 3. Section 15). The Air Force is respoIsible for providing the Ada validation

facility.

23.1.3 Impact of these I)irectiv'es

There are several significant points to be made abot tihe two directives. Most

signi fi cant is the S,,pe 'f the \da mandate: it encornmpasses all DoD software, not
just mission critical software. [he earlier l)elauer nIlev.randum had addressed just

software integral to weapons systerns. I he 1w,(direcli 'es reiif,,r(e tlhe idea that Ada is a

general purpose language and Ihat all DoI) prograni>, including management information

avst cm. (M IS). for example, will benefit from ihe use of ad anced software technology.

Ihe effect will he to gall] i Ti 1ah greater computer standardization than if weapon and

supo)rt ssv.teiis alone were required to use Ada. 'lie fact tha t lie directive specifies

Ada for all otiver applications reflect, the feelingi l)oi) 's part that the technology to

support Ada both exists and is maturing.

The existence .f these two directives gives industry a clear signal that the Dot) is

committed to Ada. For some time, industry had felt such a direction was lacking and

did not have the incentive to invest heavily in Ada software engineering tools, training,

or research. Several recent studies AFC87 and l)St37 had noted the lack of a directive

and strongly urged the I),dI to unite behind a strong policy statement. The signing of

l)ireclives 3105.1 an (3111.5.2 show that l)ol) is serious and that tie transition to Ada

will become effective.

Waiver granting authority is delegated to each 1)oi) component. Either the USI)(A)

or the ASD(C). however. may request to review waivers, as appropriate. Thus any

component granting too rilany waivers will certainlI attract attention at high levels

'il hin the I)oD. Moreover, waivers cannot be granted for entire programs; waivers can

only he requested and issued at the system or subsystem level.

The fact that a)oI) wide directive has been signed will enable I)ol) components
to issue enforceable regulat ions. Inlike th l1iS3 policy letter and the Draft 5000.31

regulat ion. Directives 3405.1 and 3-105.2 are official and their guidance must be followed.

[heir status as Directives gives them more prominence and is evidence that the Dot)
is committed to language standardization. The fact That both directives are effective

23-3

immediately reemphasizes this point.

23.2 Air Force Policies

Current Air Force policy requires the use of Ada or JOVIAL on all major programs.

Only validated compilers may be used. This policy is set forth in Air Force Regulation

(AFR) 800-14, which must undergo revision in order to be compliant with Directives
3405.1 and 3405.2. At the time of this writing, the Air Force is still working on submitting

its implementation plan to the AJPO.

23.2.1 AFR 800-14

As noted above, AFR 800-14 does address Ada. It will require several changes in

order to be fully compliant with I)irectives 3405.1 and 3405.2. The essence of these

changes follows:

" the Ada requirement is effective immediately for all programs. not just major
programs.

" an Ada-based PDL requirement must be added, and

* the waiver policy for both weapons systems and information systems must be

defined and agreed upon among Air Force components.

Air Force Logistics Command (AFLC) and Air Force Systems Command (AFSC)

jointly issued a supplement to AFR 800-14 in September 1987, to address the life cycle
management of computer resources in systems. This supplement mandates the use of

Ada on all new AFSC and AFLC programs, except for automatic test equipment test

programs. Moreover, major programs must use an Ada-based PDL. Software develop-
ment and support must comply with DoD-STD-2167.

The AFR 800-14 Supplement provides a framework for technology transition. Each

Product Division (within AFSC) and Center (within AFLC) must establish a Mission

Critical Computer Resource Focal Point (MCCRFP). The MCCRFPs are responsible for
the distribution of information (policy and technology related) and for the tracking and

initial processing of waivers. The AFR 800-14 supplement provides detailed information
on the content of waiver requests and the kinds of justification material required.

23.2.2 AFR 700-9

AFR 700-9, which is currently under revision, addresses computer programming

language policy. It is expected to set the standards for communication and computer

23-4

systems, to outline the responsibilities of major commands, set the policy on program-
ming languages, list the currently approved languages, and address the use of 4th gener-
ation languages (4GL) and specialized languages. The revised AFR 700-9 will be based
on Directive 3405.1.

23.3 Policy Changes since Previous Editions

The AJPO has announced that it will not renew the federal registration of the Ada
trademark. In lieu of the trademark, the AJPO has adopted an Ada certification mark
to show that a compiler is validated under the Ada Compiler Validation Capability
(ACVC) suite. It was felt that the certification mark, which like the trademark has a
legal definition in the United States Code, was a more appropriate means to protect
the integrity of the Ada language. Vendors should use the certification mark, shown in
Figure 3. on literature and documentation associated with a validated compiler.

TO * SAImu. II SA ASwtm"AuO ff MG A"P
UNDM ITS CUMRT

TUSMMMG PROCED S

Figure 3: Ada certification mark

23-5

Section 24

Benchmarks

In earlier editions of the Program Office Guide to Ada, benchmarking was discussed

with regard to Verfrmance evaluation of Ada Compilers (Edition 1, Section 6) and to

the Ada Compiler Evaluation Capability (ACEC) (Edition 2, Section 13). In Section

6.3.2 of Edition 1. Execution Speed, it was indicated that comparing benchmarks for

Ada to those for other languages can be quite deceiving if not performed properly. In this

section, we will r-view some of the existing benchmarks for Ada and some of the current

studies underway which will help managers select systems with the aid of benchmarks.

24.1 Purpose and Description

Benchmarks are used t, perform experimentation and evaluation of various ap-

proaches in order to minimize risks to a project. In general the benchmarking process

BRAI'N88' will include the following series of steps:

@ Identifying critical areas.

a Analyzing alternative approaches,

e ('reating and conducting experiments, and

* Applying the experimental results to the decision making process.

Benchmarks are being applied to compilers. There exist several synthetic benchmarks6

which are commonly used by compiler vendors to supply comparison data. Some of the

more common ones are discussed in Section 24.2.

At times. it is advantageous for an organization to modify existing benchmarks or

create application specific models in order to measure an Ada system's performance in a

world that approximates the target environment. This might entail running applications

comparable to the finished product to determine if code size and execution speed are

sufficient. The Common Ada Missile Package (CAMP) Armonics (armament electronics)

Benchmarks, which will be discussed in Section 24.3.6, are an example of application

specific benchmarks.
6A synthetic benchmark is a test written specifically for the purpose of collecting benchmark data.

Synthetic benchmarks are distinguished from natural benchmarks, which are usually application code
adapted for the purposes of measurement.

24-1

24.2 Major Existing Benchmarks

Benchmark tests are designed to measure the capabilities of a computer system. The
results are used to compare different computer systems and to determine the suitability

of a computer system for particular tasks. The basic output produced by a benchmark
consists of the time required to perform some task. A common technique is to write a

program that performs some representative activity between calls to a system timer.

Some benchmark tests are designed to measure the performance of individual fea-
tures while others combine several features in a single test. This second type, commonly

known as a composite benchmark, captures the interaction of features, but it should not

be construed as representative of real-time applications. In tuning a sy stem, results of
the first kind of benchmark can be extremely useful. Refer to Edition 1. Section 6.3.2.
for more information on benchmark application techniques.

24.2.1 Performance Issues Working Group (PIWG)

The objective of Performance Issues Working Group 7 (PIV(;) is to provide informa-
tion to the Ada community on performance issues related to Ada. PIWG has developed
and distributes a test suite consisting of performance related tests.

Anyone may submit a performance issue specification to PIWG in which one re-
quests performance measurements of special interest. The point of contact is:

Jon S. Squire

\Vestinghouse Electric Corporation

P.O. Box 746
M/S 1615

Baltimore. MI) 21203
(301)765-3748

benchmark (ajpo.sei.cmu.edu

The PIWG suite resides in the directory -ftp/publicjpiwg, on AJPOSEI.CMU.EDU.

24.2.2 University of Michigan

The University of Michigan tests CDV86' evaluate the execution speed of specific

features of the Ada programming language. The focus is on the features from the Ada
language and run-time system that are believed to be important for real-time perfor-

mance. They address the issue of real-time performance measurement, with particular

'PIWG is an ACM SIGAda Working Group.

24-2

regard to time measurement and scheduling. This approach isolates relatively small

items to allow comparisons of critical interest (e.g., rendezvous versus subroutine call).
These tests have revealed some interesting observations about the effect of compiler de-
signs: for example, certain methods used to do certain optimizations, dynamic storage

and exception handling affected the benchmark results.

24.2.3 Whetstone

The Whetstone benchmark C&W'76, one of the older benchmarks, measures the
performance of floating-point arithmetic. It was originally written in ALGOL 60 and
subsequently translated to FORTRAN. The benchmark computations are based on the
statistical distribution of statements from data collected in 1970. Programming lan-
guages have changed greatly since then. with the introduction of modern features such
as record and pointer types. so Whetstone does not cover all of the features of Ada.
However, the Vhetstone benchmark is rich in floating point calculations. and as such
is useful for comparing systems when the major concern consists of the performance of

scientific calculations.

24.2.4 Dhrystone

\Vhile the \Vhetstone benchmark is biased towards numerical computing, the Dhry-

stone benchmark concentrates on syslems programming. The benchmark looks at the

type of data and operations performed. The Dhrystone benchmark \\EI84 used recent
data on the actual use of programming languages'. As a consequence, the Dhrystone
benchmark mainly measures the speed of non-floating point code.

The Dhrvstone benchmark was developed in Ada with three guidelines: 1) the code
should follow good programming practice; 2) the distribution of constructs should be
weighted in favor of systems programming software; and 3) the benchmark should be

designed so versions in other languages would be possible with minimal modifications.
This last goal was, in fact, difficult to achieve because of the disparity of constructs in
the spectrum of programming languages (e.g., FORTIRAN has neither access nor task
types).

'Programming languages used include FORTRAN, XPL, PL/I. SAL, ALGOL 68, Pascal, and Ada

24-3

24.3 Additional Work

24.3.1 Production Quality Ada Compiler Report

'[The P'rodlitiori Qi at ty Ad a (wOi pi ir Report 'H IiN 86 produced b), The Aero-

space Corporation for t he Spac: l vsin fh Air Forc Ivs em om ,Iitne

to provide guidelines for exiihiiiii~isiol td in IA cw-rnpilrs. The report defines dif-
ferent levels of qualit.% comrpilers it piicl jehe mnlinimi requirements for a compiler,

arid theni con!inues, ti describe the qji:alitw t- f ii Tiire-(ideal compiler.

'The evalunation (J at, Aia cni pd er to be Jprocitic-fon quialitNy is based on satisfNing

t he Following req iiii reut

*Perforn~anrve.

* (un pifer- capacil v.

*I'ser interfac.

F xieint fl~i' 't-riJ

a A\da lanrt ia

* Iscini r a i twion ~ ii)1

Fit ah(\r requir irltn *uipPi\ !(a (Il te opiler t\seu(~. he compiler, the

Add(iibrar nTlaflag('r. linker loader. arid Ada ruin tlI(n xse Guidelines are given to

evatluatc thec production quialiiy ,f a C(ripiler 'tI- ie guidelines specif\ particular

ttphiitelarid (haracterli1((,I pri~nqat OMnllir systemi.

Req nests for copies (of I he rcport sh a (1 he mnade to:

A er(pacc LJIbrarv

Recports Circular i)I
(MNl 1 '!9)
1).0. Box 92957

Los A ngeles.(C \ 90110~9

R eport No. *FOR 010 6(69(2 0'3)- or NTIS .%l): A182

I he report in1cludes self test s ft x re to en11Able readers Of t he rep)ort too evaluate the

production qualitNy characteritic, of their 'wni compilers.

2-j 1

An effort is underway to apply the guidelines developed in this report to commer-

cially available compilers. Two VAX 9 hosted compilers, from DEC'0 and Telesoft. were
selected. The compilers are being installed, and the suite of tests described in the report

is being run. A report on the DEC results can be obtained from the point of contact

listed below. The Telesoft results, as well as a revised version of the Production Quality

Ada Compiler Report definition, shouid be available later in 1988. The point of contact
is:

Lt Kurt Maschoff
Space Division
SD'ALR
P.O. Box 92960
Los Angeles, CA 90009
(213) 643-1279

(AV) 833-1279

24.3.2 SEI Benchmarks for Embedded Real-Time Systems

The Ada Embedded Systems Testbed (AEST) project at the Software Eiigineering

Institute (SEI) is studying benchmarks to obtain data on the readiness of the Ada lan-
guage and Ada tools for use in real-time systems. The focus of the project is on run-time

performance. not compiler statistics. Both the PIWG and University of Michigan bench-

marks are being run on VAX hosted. Motorola 68020 targeted compilers. Additional
target systems under consideration include the MII-STD-1750A processor and t he U.S.

Navy standard processors.

A survey of benchmarks has been conducted. DON87 . Initial work in running

the benchmarks has revealed inherent problems, documented in ALT87 and A&,'871.
Wild swings in numbers have been reported because of differences between System.Tick"

and clock resolution.)ual loop benchmarks do not necessarily remove the effect of clock
imprecision. Benchmark tests need to be run for a large number of iterations in order to

determine a stable result. Paging hardware, even on a bare machine, can affect timing

results.

An important conclusion of ALT87] is that Ada benchmarks are not fully trans-

portable; in other words, the tester should expect to modify and adjust the tests for

a given system. Both efficiency and performance considerations should be enumerated,

for example, code generation, run-time support. tasking overhead, exception handling

overhead, subprogram overhead, etc. Moreover. the underlying assumptions about the

9VAX is a trademark of the Digital Equipment Corporation.
°DE(is a trademark of the Digital Equipment Corporation.

''The precision of the machine clock, i.e., the duration of one tick

24-5

measurement goals and their accuracy must be examined and validated in order to obtain
meaningful benchmark results.

24.3.3 Real-time, Run-time Environment Studies

The purpose of the Real-time Run-time Environment Studies is to investigate the
performance impact of real-time environments through the execution of benchmarks for

all features of the language. "The tests are implemented in Ada, JOVIAL and FORTRAN
in order to allow comparison between these languages. There are also tools to facili
tate comparison and analysis of test results. This effort is sponsored by the Computer

Resource Management Technology Program, (Program Element 64740F), ESD,/AVS,
Hanscom Air Force Base. MA.

The Real-time Run-time Environment Studies is a system which contains test rou-
tines to execute language features and input/output. 'The focus of these studies is to
create benchmarks that are very specific to individual Ada language features, in other
words, to address the question. "How good is Ada relative to other languages with re-
spect to size, speed, etc." on a feature-by-feature basis. The test suite includes some
well known composite benchmarks such as Dhrystone and WN'hetstone.

The products of this effort are a test set and an accompanying user's manual. The
test set is known as the Ada Compiler Performance Suite (ACPS). The initial version
is planned for the VAX. with versions for the IBM and 1750 processor planned. The
current test suite and preliminary user's manual are available from:

Rich Kayfes
Aerospace Corporation

(M1/ 65)
P.O. Box 92957
Los Angeles, CA 90009

(213) 336-6092

24.3.4 Ada Run-Time Environment Working Group (ARTEWG)

The Implementation Dependencies Subgroup of the Ada Run-time Environments
Vorking Group' 2 has collected information on run-time compiler dependencies. The

information is being assembled into a catalog that will list the run-time implementation
dependencies as they relate to the Ada Language Reference Manual. The catalog will
give users the needed information on how the various Ada features are implemented by
different compilers. It will provide insight on how applications will behave at run-time.

12ARTEWG is an ACM SIGAda Working Group.

24-6

See Section 28.4 for further information.

24.3.5 Commercial Ada Users Working Group (CAUWG)

The intent of the Commirercial Ada I'sers XNorking Group'" (CAUWOV) is to serve as a

liaison between potential commercial Ada users, and the defense community and AJPO.
CACNVG will be a focal point for the exchange of information on the Ada transitional

experience. The grouip is investigating the harriers to the commercial use of Ada and

identifYing way's of res'.lving the technological gaps uncovered. Specifically, CA UkG is
looking into Adta iut erfacc i-.ucs for7

" fourth gelieration li ig A IS).

" 'oi~ol'.

" RfI(C2 sv~teriis.

a A tl1 (C 0I)F..

" ISA\1'VSAM files. anid

" text processing.

CA('\%'(is also Inivestigatinig thec kind ofsupport needed for the use of Ada in dlistributed

processing a pplicatiolls.

CAt XWG will docIMnjent the resuilts of its activities through guidelines on Ada prod-
uct s and tools, tailored for the nieds of commercial users. The point of contact is:

D~ave D~ike!
Addamax Corporationl

7799 Leesburg Pike. Suite 900.
Tv sons C orner . VA\ 220.13

(703)847-6755

24.3.6 Armonics Benchmarks

Arnionics. short for armament electronics, software is one of 'the part categories

developed uinder the (Commnon Ada Missile Program (CAMP). The software has been
modified to be suitable as benchmark tests for evaluating Ada system performance in this

specific domain. U'nlike other benchmark efforts which tend to be more language-feature
or capacity oriented, these tests are application specific.

13C A U %G is an ACMN SIG Ada Working Croup.

24-7

There are two series of tests: one for missile operational parts and the other for

support routines. An example of support routines are the mathematical tests (e.g.,

trigonometric functions) which allow the user to compare characteristics such as time
and accuracy across different Ada implementations. The tests are designed to measure
compiler correctness as well as object code size and speed.

These armonics benchmarks are available through the Data and Analysis Center
for Software (DACS) library located at Rome Air Development Center (RADC). The

DACS library functions as a distribution center; no on-line help is available. To obtain

the armonics benchmarks, requests should be sent to:

DA CS

RA DCi CO E1)
Griflhss AFB, NY 13141-57JO

Attn: Document l)ata Set Ordering
(315) 336-0937

The benchmarks are on magnetic tape medium and are available at a nominal

cost. Requestors must also sign a terms and conditions statement from RADC. Several

CAMP components are distributed through the DACS library: requests should specify

the component clearly (i.e., CAMIP parts14 , armonics benchmarks, or expert system15).

14 The CAMP parts are the reusable missile software parts. See Edition 2 Section 11.2.

"5 The CAMP expert system was built to aid in selecting the appropriate missile parts and constructing
the resultant program.

24-8

L

Section 25
Simulation and Emulation of Systems in Ada

Ada was not designed as a simulation language. However, the language does provide
programming constructs that enable a user to build a simulation system similar to what
would be possible with a simulation language.

.\]though, simulation languages are very diverse, they will all provide a user with
simulation control. random stimuli generation, and statistics collection. Some also pro-
vide scheduling and garbage collection. Two of Ada's features that are very useful for
implementing simulation systems are tasks and packages. Tasks provide a way to do con-
current processing. and the task rendezvous allows for synchronizing concurrent entities.
Packages promote modularity in addition to data and process encapsulation.

There are many diverse types of computer simulation used today. They are gener-
ally grouped into four classes, Monte Carlo, continuous, discrete-event, and combined
discrete-continuous, each with a special type of system that it is used to model. Ada can
be used for any of these types of simulation, but some specific applications may require
specialized run-time system support. A discussion of the use of Ada for discrete event

simulation can be found in 'SHO87 , ,A&-$87. and 'BRU84. The general conclusion has
been that although Ada has some weak spots (in inheritance and garbage collection of
allocated task bodies). it is quite well suited for this type of programming.

25.1 Simulation vs. Prototypes

Simulation and prototyping are related concepts. Their difference is mostly one of
purpose. Prototypes are generally of a subset of an implementation. They are designed
to show the functional capabilities of a portion of the system. On the other hand,
simulations usually mimic various aspects of a system's behavior.

At times a simulation will be used with a prototype. The simulation would mimic
the environment in which the prototype executes its functions. The relationship between
prototypes and simulations is analogous to the one between a module and its test driver.

To decrease the level of risk on projects. the use of prototyping and incremental
releases is being advocated. Critical portions of systems are prototyped or simulated
early it the life cycle to determine the feasibility of the system. System design reviews
often include demonstrations, either in the form of a prototype or a simulation.

25-1

25.2 On-going Simulation Work

There are an increasing number of investigations using Ada in simulations. In
general Ada is being chosen for several reasons:

" High Order Languages are easier for programmers to use,

" Ada packages enhance modularity and maintainability,

" Ada provides multi-tasking,

" Ada supports dynamic allocation of memory,

" Ada has an interface to low level I/O,

* Strong type checking prevents data in low level modules from being accessed by
accident,

" Record types provide a means of storing arbitrary types of data. and

" Ada supports linked list manipulation, needed for data collection and event calen-
dar management.

Several efforts are using Ada for simulations in the systems area as well as the
applications area. In "M&G87, a general purpose discrete-event simulation package is
described. A queueing network simulation package is discussed in HAS88,, a motor
plant simulation in 'KIM,88', and a spacecraft dynamics simulator in BGA88'.

To support ESD's investigation of alternative Battle Management Command, Con-
trol, and Communications (BM/'C3) architectures, the MITRE Software Center is in-
volved in simulating real-time, space-based battle management functions. Their simu-
lating software displays three-dimensional state vectors on a workstation. They plan to
support other Strategic Defense Initiative (SDI) simulations by designing the framework.
The point of contact for further information is:

SDI Simulation
The MITRE Corporation
Burlington Rd

Bedford, MA 01730
(617) 271-4501

Two aircraft training simulators were redesigned and reprogrammed in Ada. The
objective was to apply a modern software engineering approach., partitioning the system
based on data flow and object abstraction techniques. Tasking was used sparingly in
these simulations for efficiency reasons. Further information is available through:

25-2

'- mm llmmm mmm m mmm

ASD /YW B
WNright Patterson AFB, OH 45433
(513) 255-7177

25-3

Section 26

Lessons Learned on Ada Projects

The Ada language has been used oni projects throughout tile military - on pilot

projects, applications under development, and deployed systems. In some cases, the use

of Ada has been by choice: in others, it has been required. A baseline of experience is

emerging, and the consensus is that Ada systems are. in fact. feasible. Ada development

is bY no means problem free. largely due to immature tools and to the need for new

software engineering approaches and attitudes. There are clear benefits, however, from

the use of Ada. The distribution of time in the life cycle is altered, with a greater

proportl in Of tiine being pvnt earlier, in the design phase. with the result that the

generated code is more correct.

In theor. using Ada is supposed to bring all sorts of benefits, in particular, lower

cost and improved quality of source code. Practically speaking, however, managers who

have not vet undergone the transition to Ada are asking, is all the propaganda really

true? In reading about Ada one often just hears the two extremes: the system can be

d,,ne in Ada or the ' vsIen cannot be done in Ada because Ada is too big. too slow.

etc. Results from the field are available, and this section will try to present the lessons

taught by tis early experience \with Ada.

This section presents a sumnmary of the Government's and its contractors' experience

with Ada projects. The project database represents holh large and small projects in

terms of flon ey and ize. I)ifferent aspects of Ada experience are discussed in order to

give a betler perspective on what to expect in the transition to Ada.

26.1 Metrics

The ever increasing cost of and demand for software is focusing more attention than

ever on software productivity and quality, Several metrics are used ranging from the

the program si/e in lines of code per unit of time, to the frequency of software failure.

Regardless of the aspect being measured, productivity is usually defined as a ratio of the

outputs produced by a process to the inputs it consumes 'BOE87j..-ccording to Boehm,

the greatest problem exists in defining the outputs. Partly because of the deficiencies

in the traditional metric of delivered source lines, alternative units of measure based on

program complexity have been advanced. Current efforts are aimed at establishing a set

of baseline metrics to help project personnel monitor the quality and status of software

projects iKEN87 .

Productivity data on Ada projects is becoming available. Because of the newness

of Ada technology and some unwillingness on the part of projects to release data, these

26-1

numbers should not be viewed in absolute terms. They are, however, indicative of some

important trends that show that using Ada will have an unmistakable impact on software

development and cost.

26.1.1 Distribution of Effort in Different Phases

Numerous data collection efforts reveal that Ada projects are front-loaded. Both

first time and repeat Ada users have found that much more time is spent in the design

phases, and much less time in the code and integration phaseb. The traditional distribu-

tion of software development effort across the design, code and test/integration phases is

40-20-40, whereas Ada tends to be more 50-15-35 IREI87I. Several projects have found
that integration took less effort than originally planned.

There are several reasons explaining why Ada projects tend to be front-loaded.

This distribution reflects greater attention being paid to software ei ",,. ering, w hich

encourages greater effort and thought in the early phases. The Ada language contains
powerful program structure features which are available to the designer when Ada is

also used as a PDL. Ada must be learned earlier in the life cycle than other languages.

because it is also used as a PDL.

The distribution of effort in the software life cycle should also be examined from the

point of view of the software standards. U'sers have noted that the software development

standards, including DoD-STD-2167, are not wholly compatible with Ada software de-
velopment. Complaints focus on the fact that they do not allow for evolutionary software

development. The use of Ada as a design language increases the problem because it is

difficult to differentiate between the expression of the design and actual code..Most stan-

dards require that the PI)l. be frozen before any code starts. The use of Ada compounds
the problem because in Ada, the P[), is continually refined into code. In the course (,f
this refinement, changes will probably need to be made to either the requirements or

design, and when the design is expressed in an Ada PDL. it appears to be duplication

of effort to update one set of files representing the design, and an almost identical set of

files representing the design as partly expanded into code.

26.1.2 Productivity

A traditional measure of productivity is in delivered source lines. In earlier lan-

guages, for instance FORTRAN, a line held a whole statement (or most of it). In Ada.
free formatting is encouraged for readability, and a line taken literally may well be blank

or contain only a small part of a statement. Strictly speaking, there will probably be

many more lines (in the sense of FORTRAN card images) of code in an Ada program
than in a program in some other language. The separable characteristics of Ada speci-

26-2

fications and code provide an additional quantity of semicolons to reflect specifications

and context clauses. These increase the semicolon count in Ada necessary to reflect an

equivalent structure in some other language. In some cases this could be a 26% overhead
in Ada and quickly offset a perceived productivity increase. Furthermore, additional Ada
language constructs are used to define context and interfaces and these add to the semi-

colon count and should be considered when comparing an Ada effort against another
language such as FOR'RAN. Consequently. a revised measure is emerging, based on

counting semicolons. Various considerations apply in counting semicolons, as noted in
REIS7.

Several attempts have been made to calculate Ada productivity in terms of semi-
colons per person-m,,tilh. the average for these estimates is in the range of 277 to 310
H&S7 and REI7 semiclons per person- month, higher than the industry average of

200 lines of code per pcrson-nt1h. .A.nother study reports a 23/(increase in produc-
tivitv over t!)e life of an .\da project FOFS7 . consistent with the increase reported in
he l1arbaugh ;1ind Reifer studies. Reifer acknowledges that there is a fairly wide range

of productivity iinbers collected in his research. reflecting the steep learning curve for
Ada. The important lesson here is the trend to higher productivitv.

The higher productivity figures must be interpreted in light of the steep learning
curve for Ada. Numerous smrces have found that the productivity gains will not be
found in tile first two or three Ada projects and. in fact. the first couple of projects may

show a prodtictivity decrease. Ada requires a heavy up-front investment in training.
tools. and experience base. The theme of the December 1987 SIGAda conference was
Ada usage. and many of the articles in the Proceedings. as well as studies published by
the Arrned Forces ('ommuniciat ions and Elect ronics Association (A FCEA) and Defense

Science Board AFC87 and 1)SB8T. point out that this investment is part of the cost of
the transition to Ada: an investment that must be made in order to realize the benefits

promised by the use of the Ada language.

26.2 Language Objectives

The purpose of using Ada is not just for the language but also to accrue Ada's long

range benefits to the entire software engineering effort. In looking at Ada experiences.
we have to consider not only the programmers' experience with individual language

features. but also issues like design, reusability. portability, language use, testing, and
maintainabilitv.

"llHarbaugh's data covers one project, the Graphic Kernel System (GKSI Ada implementation, while
Reifer's database includes 41 projects.

26-3

26.2.1 Design

Lessons learned in the design phase fall into two major categories: the use of a
design method derived from object-oriented principles and the use of Ada as a design
language. In general., an object-oriented approach refers to a data-driven design philoso-

phy. Software is viewed in terms of objects and operations on these objects, rather than
along strictly functional lines.

The danger with some of the object-oriented approaches is their tendency to over-
simplify the design process. Criticisms of \arious methods include N&S871:

* Lack of guidance on designing concurrent processes.

* Too deeply nested hierarchical structure.

a Limited domain of applicability to small. well-defined and well-known problems.
and

* Awkward and impractical strategy, reflecting more art than engineering discipline.

Object-oriented design has become popular in the industry and its precise meaning
differs among different people. In choosing this approach, or any other methodology.

caution should be exercised to make sure that the design technique provides not only a
disciplined decomposition of the internal functions but also guidance on "the packaging
of software modules into Ada tasks, packages. and subprograms N&S87 ."

Ada has been found to be a good language to use for expressing design. Some
projects have. in fact, used Ada as a design language and another language as an imple-
mentation language."7 The primary reason lies in the program structure facilities that
exist in the language, in particular the package feature. There is disagreement within
the Ada community as to whether full .Ada or restricted Ada should be used when

recording a desigri. The restrictions are aimed at preventing the designer from coding

prematurely, for example by disallowing statements within the PDL. Many Ada pro-
gram design languages (PDLs) define classes of structured comments in order to allow
the designer to express other information which is not directly expressible in Ada, such

as timing constraints and input assumptions. (Edition 1, Section 5 discusses PDLs.)

In spite of this drawback to using Ada as a PDL, namely the risk of premature
coding, there are major benefits which have been realized. Assuming that the PDL can
be machine processed (often by an Ada compiler), syntactic and semantic errors are
caught much earlier in the software life cycle, in particular interface errors, such as one

module calling another one with the wrong name or the wrong types of parameters.
Because the PDL and the coding language are the same, creating the PDL effectively

1
7 Directive 3405.2 states that an Ada-based program design language will be used for software design.

26-4

creates the code skeleton. Furthermore, because the code is completed through successive

iterations of refining and expanding the PDL, the software development process is more
evolutionary in nature, allowing for improved error detection and correction.

The point to be made here is that a compilable PDL should be used. One project

has said that they suffered because their PDL was not compilable and, therefore, certain
clean interface errors were not caught. Many published articles encourage the use of a

machine processable PDL, i.e., an augmented compiler which can machine process the
annotations. Such an enhanced compiler would not need necessarily to generate code

from the PDL.

There is no agreement in the community as to whether Ada should be used during all

stages in the life cycle. Some analysts feel that Ada was not designed to express system

structure or system constraints. They feel that graphics or some other annotations

are needed to capture temporal information and other constraints. A very persuasive

argument against the use of .-\da too early in the life cycle, such as during requirements

definition, has been advanced: Ada is part of the solution, and requirements definition
involves determining what the problem is. It is not a good idea to explain a problem iv

describing its solution. AIM,. the solution process must be defined before the solution

technology can be selected. Ada is a tool, not a process, arid it is the process which
implies the tools, not the other way around.

Neither Ada PI)I. nor object oriented methods have been found to be sufficient on

their own. Used toetlhr I 1ev cain be a powerful combination. in particular when the

object-oriented meth ,d tComunicates the design through a graphical notation. The use

of integrated tools supp,rting both the graphics and PDL is extremely important.

26.2.2 Reusability

One of the promised and highly promoted benefits of using Ada is reusable code.

Ada experience to date shows that reusability does not happen by accident. The design of

the software must have reuse in mind, and management must plan for reusable modules

as a product. Reusability is not free; in fact. one study shows it to be a major factor
influencing cost arid size estimation REI87.

In discussing reusability. one should identify the level of reuse: reuse of utilities
versus subsystems. and reuse within one organization or within the superstructure of
the organization. Reuse has become a catch phrase, and sometimes it mav only refer

to utility libraries. Whenever a programmer writes a generic and instantiates it, he is
• reusing" code.

Reuse costs time and mone\. It must be designed into the system and it affects
design decisions. Edition 2, Section 11.2 addresses issues of motivation, design, and

incentives. In designing reusable components, it is imperative to do a thorough functional

26-5

domain analysis. This analysis should be done as a cooperative effort between domain
expert(s) and software engineers. Management must plan for both good communication
and an effective retrieval system. If other projects do not know about the reusable
components and cannot access them easily, reuse will not occur.

A key element in planning for reusability is the creation of an effective library and

configuration management system. The Ada program model consists of a single library.
Different Ada projects, each with their own library, cannot share modules easily unless
the source code is duplicated for each project. Should these reusable units be changed.,
the changes must be both propagated to each reuser and recompiled within each project
library. Tools are needed to facilitate the concept, of multiple libraries DAU871.

Several reusable libraries exist, in the commercial and public domains. (See Edition

2 Section 14.) In addition, there are two major government funded efforts to create
reusable components, the Common Ada Missile Package (CAMP) for missile compo-
nents (Air Force Armament Lab) and the Reusable Ada Packages for Information System
Development (RAPID) for a library/retrieval system (Army Information Systems Engi-
neering Command). The Software Technology for Adaptable Reliable Systems (STARS)
program is expected to fund a reusable software repository. It is significant that there
is sufficient high-level interest to create the environments needed to support reusable
components, as manifested in these three government sponsored efforts.

26.2.3 Portability

There is limited experience in porting Ada code. Few applications have been ported

across different host machines. Ada tool vendors have the most experience in porting
Ada code insofar as they offer products whi'± -ux, on different hosts. As with most
languages, machine-independent portions of code are easier to port. Edition 2 Section

11.3 discusses portability in depth.

An important consideration in porting Ada is the tool set on the target machine.
In some cases, the development and execution environment are different. The target
environment needs an adequate tool set for testing and debugging purposes, sI) that
productivity losses are not incurred. When the development and support environments
are different, there should be a strong relation between the two. ideally a cross compiler.
Without such a facility, all code needs to be recornpiled after it is ported. In theory.
this should not be a problem but. in practice. the compilers may not be of the same
maturity and will not necessarily generate code of equivalent quality for all Ada con-
structs. Moreover, there are risks that the compiler on the target machine cannot handle
optional Ada features related to representation specifications (Chapter 13 of the Ada
Language Reference Manual) and that it has a different set of bugs requiring different
workarounds than on the development system.

26-6

Configuration management is an issue in portability, especially in the situation
where source code is being developed on several machines. Experience indicates that a

great deal of automation is required to control source code and maintain stable baselines.

Benchmarks have been ported frequently and have required some editing to compile
and execute successfully. Compiling benchmarks for the first time may reveal errors in
the compiler or in the benchmark. The benchmark may assume pragmas that have not
been implemented on a given system. In running benchmarks on embedded computer
target systems, modifications may be needed in order to link to the target input/output

functions. A more detailed discussion of benchmark experiences is in Section 24 of this
Edition.

26.2.4 Language Use

Isers' experiences with Ada language features are very positive with respect to

Ada's strong typing and program structuring constructs hut negative with respect t

existing implementations of Ada run time systems and Ada's tasking paradigm. Ada

has made certain application code more efficient, for example, slices. The use of Ada
has led to much cleaner implementations of the designs., which are easier to understand
and work with at integration time.

The biggest problem. however, lies in immature tool sets and the lack of efficient
run-time support. Early releases of compilers did not support the machine-dependent
interface of the language. causing problems for man' real-time applications. Early im-
plementations of generics resulted in too much code expansion. The tasking overhead,
especially that for rendezvous and the associated context switching, is too high for most
applications. A high level of CPV reserve is needed in order to run Ada software. Prob-
lems have been reported with the implementation of Ada's input/output features for
some applications. Many of these problems have been resolved in subsequent releases of

compilers.

Run-time systems need to be integrated with existing libraries and system services
such that the application can place appropriate calls to those modules. The language-

defined interface pragma needs to be supported. Run-time support libraries need ad-
ditional flexibility to accommodate custom hardware chips as well as built-in test, bit

manipulation, and fast interrapt capabilities.

The Ada Real-Time Environments Working Group (ARTEWG) has studied the

deficiencies and requirements for Ada run-time support extensively. Their recommen-
dations focus primarily on tasking. including standard application-specific scheduling
algorithms packages, language clarifications, and guidelines on the use and implemen-
lation of task priorities. In a white paper published in the December 1987 Ada Expo

Proceedings ART87 . the ARTEWG discusses shortfalls in current Ada run-time tech-

26-7

nology. The ARTEWG advocates systematically addressing these problems in order to
develop Ada run tirne idioms that meet embedded system space and time constraints as
well as fault-tolerance, distributed computing, and niulti level security requirements.

Although these inefficiencies are major, experience shows that they are not necessar-
ily a reason not to use Ada. Workarounds have been found in almost all instances. The
issue of excessive tasking overhead is being addressed by individual vendors, and the- are
various solutions being proposed. including possible language changes' s , implementation-

defined pragmas. and interfacing to assembly language where necessary. Successive
releases of tool sets have been showing substantial improvements in performance and
functions.

26.2.5 Testing

In several projects which gathered statistics on error rates, it was found that the use
of Ada reduced errors by 25% to 30%. Significantly more errors were found before the
integration phase. in several instances reducing the amount of lime spent in this phase.
This reduction in errors was attributed to the extensive static checking performed by
the Ada compiler. By compiling their designs, users found that they could eliminate the
syntactic and semantic errors between module interfaces early in the software life cycle.
without the difficulties normally encountered during the integration phase.

Testing Ada programs has revealed interesting results. The use of certain Ada con-
structs such as exceptions, generics, tasking, and packages requires a different approach
to testing. More special-purpose drivers are needed in order to conduct unit tests. The
nondeterminism of task scheduling makes it more difficult to test concurrent programs
because the failures may not be repeatable. Testing effectiveness has increased due
to some Ada features. The information hiding supported through the proper use of
packages has reduced regression problems. Strong typing and program unit specifica-
tions have automated detection of interface errors. The existence of exception handling
has encouraged programmers to think about potential exceptional situations, thereby
reducing errors.

Since the initial release, the validation suite has become more thorough in its cov-
erage of language features. A validated compiler, however, is by no means a guarantee
of a perfect, error-free compiler. The validation suite tests conformance to the stan
dard; it provides no guarantee of performance or adequate -un-time support. Over time,
however, with successive releases of the validation suite, some of the harder-to-test fea-
tures are being covered. For example, with releaoe 1.9, there are tests on tasking, Ada

18 The International Real-Time Ada Issues Workshop identified several areas where language changes
would help make Ada more responsive to the real-time embedded community, such as fault-tolerant
non-distributed execution, program reconfiguration, and hardware interrupt priorities WOR87>.

26-8

r

Language Reference .Manual Chapter 13 features, and fixed-point types. As discussed

in Edition 1. Section 3.1, however, the validation suite can never be complete and test
every nuance of Ada.

26.2.6 Maintainability

Little data is available yet on the cost of maintaining systems written in Ada. Based

on the fact that integration is easier because the Ada constructs are more understand-

able, maintenance should also benefit from Ada-coded programs. Software managers

expect that because Ada allows for a better representation or expression of software

structure and function, maintenance should be easier.

-The bigger issues in maintenance may well be the need for recompilation and for

configuration management. Depending on the interconnections between modules and

their location in the program dependency tree, large amounts of the program may need

to be recompiled. In other languages, such massive recompilation would be more char-

acteristic of a new release of a compiler than of a change to an existing module. At first

glance. this may seem to be a substantial drawback to the use of Ada. To the contrary.

this forced recompilation will catch many other errors which might otherwise creep into

the system. namely the notorious ripple effect errors. Sophisticated incremental recorni-

pilation tools will also help in limiting recompilation by analyzing the impact of code

changes and only making those units obsolete which arc affected by the change. Good

design of a system may avoid most, if not all, of these problems.

The need for configuration management throughout all phases of the life cycle is

important. The Ada program library model enforces a current configuration because

the insertion of an updated module in the program library automatically invalidates

any dependent units in the library. Because of the nature of large systems, however,

more sophisticated configuration management has been found necessary in order to track

baselines. versions. and variants. Moreover, such a system must track not only code but

also all associated documentation (design. requirements, user manual, etc.). Data on

several projects reveals that configuration management played a much more important

role than anticipated.

26.3 Tools and Training

Recently, tools and training are receiving considerable attention. Ada conferences

regularly have exhibit halls, which attract at least as much attention as do the regular

sessions. Training was perceived as a possible cause of the slowness of the Ada transition,

and the AJPO and AFCEA organized a task force to investigate the problem. The

general conclusion was that training per se was not the reason projects had had problems,

26-9

but that tools were a major contributor.

26.3.1 Impact and Adequacy of Tools

As stated in Section 26.2.4, tool immaturity caused many of the problems on Ada
projects. Production quality language tools are needed, such as symbolic debuggers and
tasking analyzers. Tools to automate other phases of the life cycle are also needed, such
as design tools to manage complexity and to help understand vertical and horizontal

relationships in the software. For example, a dependency analysis tool would be useful
in order to list both the units which depend on a given unit (in order to determine the
modules to be recompiled should this unit change) and the units on which a given unit
depend (i.e., the ones imported through with clauses, to facilitate debugging).

Ultimately, a fully integrated environment is needed. Users with more integrated
environments have experienced much higher productivity using Ada than those with
poorly integrated tools. The development environment should provide sufficient target
support to allow testing and debugging.

Vendors have made great progress with Ada tools. Looking back over the history
of Ada, the first goal was to develop validated compilers, ignoring considerations such
as speed, object code quality, and run-time efficiency. Ada compiler development has
been pushing out the limits of compiler and run-time system technology. Having met
the first goal of validation, vendors are working on their next objective. performance
and optimization. Successive compiler releases have made tremendous gains in speed.
efficiency and correctness.

There are a great variety of host/target combinations today. showing that iidusi ry
believes that there is a market and that DoD is committed to Ada. In spite of the
problems that have existed with the early tools, the Ada pioneers in the user community
have shown that Ada is possible. Having surmounted many obstacles in the tools area

and given the variety of tool options today, they stress that the lack of a compiler for a
target machine is a poor excuse: One of the recommendations coming from these users
is to look for an acceptable tool set before starting the project. Developing tools at the
same time as the application is a frequent source of technical, cost and budget problems.
These users also stress that a pragmatic rather than a purist approach is needed. In
other words, a program manager should recognize that most of a program can be done in

Ada, and that it is acceptable to isolate critical portions to be done through an interface
to another language. Just because the all the code cannot be written in Ada. it should
not be taken to mean that none of it can be written in Ada.

26-10

26.3.2 Ada and Software Engineering Training

In both government and industry, different levels of personnel in the development,
management and support functions require training in aspects of Ada and software en-
gineering. Technical training in language features and design methods is needed for the
software engineers. Managers need to learn about the impact of Ada on the life cycle
and its effect on planning, scheduling, and resource allocation. Furthermore, they must
recognize the need for training, both for management and non-management people. Sup-
port personnel, including acquisition, configuration management and quality assurance
personnel need some familiarity with the language, the software process and software
metrics.

Both government and contractor personnel agreed with the need for different kinds
of training in software topics for different categories of work. Training is needed not
only in writing software as an engineering discipline but also in a life cycle approach
to software management and control. The rotation of uniform personnel in project
management positions breeds a short term, a two to three year view of a program,
rather than encouraging a long term, 20-year. life cycle attitude.

Timeliness and hands-on experience were found to be key factors in successful Ada
training. Videotapes and computer-aided instruction were found to be much less effec-

tive teaching vehicles. Ada language training too far in advance of design and coding lost
much of its effectiveness. In order to gain a deep understanding of Ada concepts, labora-
tory exercises were invaluable. The access to the compiler enabled students to overcome
the hurdles of a new language's syntax and semantics and to gain confidence in the use
of Ada structures. Practice in designing package specifications was characterized as an
integral part of a successful technical training curriculum.

Ada training involves retraining and teaching programming attitudes. Some con-
cepts are hard to learn for programmers with a FORTRAN or assembler background,
such as those related to strong typing. Recent graduates learned the Ada language faster
because of their academic experience with Pascal and other modern languages.

26.4 Management

The use of Ada is leading to changes in management expectations and planning.
The transition to Ada has given new prominence to softwar2 issues such as reliability,
maintainability, reusability. methodology, integrated toolsets, etc. Cost estimation and
resource allocation for Ada projects are different than for non-Ada projects. The steep
learning curve for Ada means that planning for the initial project will differ from planning
for subsequent projects.

26-11

26.4.1 Cost Estimation

Existing cost estimation models will need to be recalibrated. Elements such as
reusability, the degree of real-time processing, the learning curve, and the use of Ada
program structure features need to be integrated into the models. Moreover, as the
base of Ada projects grows, the weighting factors applied to the cost parameters can be

better computed. Current weighting factors are no longer valid because of the different
distribution of effort observed in Ada projects. During the transition period for Ada
technology, prior Ada experience is an important cost factor to incorporate because of
the steep learning curve characteristic of the first one or two projects.

26.4.2 Resources Needed

Management planning must account for personnel, software, and hardware re-
sources. The initial Ada investment is expensive, involving training, tool acquisition

and, in some cases, larger computers. With subsequent projects, the need for major
outlays to support Ada declines substantially. The lack of experienced Ada designers
and programmers on initial projects adds time to the schedule. Managers have a choice
of training their own engineers or of hiring already trained personnel. In order to insert
Ada technology more effectively into their own organization, managers may want to hire
an "Ada guru" as a technical focal point. Where a successful transition to Ada has been

achieved, there has been a broad-based management commitment to the use of Ada.

Many projects have identified a need for integrated tools to maximize the productiv-
ity. gains made possible by Ada. In addition to production quality compilers, integrated
design, metrics and configuration management tools are needed. Such extensive automa-
tion adds to the cost of the first few Ada projects in an organization.

26.4.3 Receptiveness

Ada has been greeted both with enthusiasm and with resistance in government

arid industry circles. Acceptance of Ada is gaining, with the realization that the DoD is
committed (evidenced by the two Directives 34105.1 and 3405.2) and with the availability
of more mature language tools. Some projects were successfully done in Ada in spite
of management skepticism (either on contractor or government side). The commercial
world has shown interest in Ada, and several companies have made business decisions
to convert to Ada, convinced of Ada's long term, life cycle benefits. The Ada language
is regularly referenced in software-related articles.

Resistance to Ada can be attributed to a combination of psychological and technical
factors. Because of its newness and the lack of widespread Ada experience, project
managers are afraid of failure. They do not want to take the risk on their system.

26-12

preferring to let others prove the technology. The Ada technology was not mature when

the first Ada projects started, and the technical difficulties experienced were sizable.
Thee are still technical challenges today that require innovative solutions. Ada was

initially marketed as the universal problem solver for the software engineering crisis.

Because this promise was not fulfilled immediately, some managers became skeptical

about Ada's capabilities.

It is important to understand that the Ada language alone is not the entire solution;
it is one piece in a much larger integrated solution which encompasses language, tools.

and methods.

26.4.4 Ada Experience Forums

Several case studies and workshops to assess Ada experience to date have been

conducted. Two companies were contracted to redesign and redevelop in Ada two aircraft

training simulators. Reports on their experiences were published. An "Ada Simulator
Validation Program Workshop" was held and briefing slides are available through the

following address. Further informalion is available through:

ASD "YVB
Wright Patterson AFB. Oil 45.133

(513) 255-7177

The Electronic Industries Association held a workshop in November 1987 which

addressed Ada experiences as well as industry questions on DoD-STD-2167 and DoD-
STD-2168. The Ada Information Clearinghouse is continuing to accumulate a database

of DoD programs currently using or planning to use Ada. They have developed a survey

form to collect data on:

* program name and sponsor,

e point of contact.

e brief functional description of software.

e host and target systems.

a tools (compilers, design tools. etc.)

@ estimated size,

@ productivity,

* education and training,

26-13

.- - .

a life cycle costs, and

e lessons learned.

The Ada Information Clearinghouse may be reached at:

Ada Information Clearinghouse

3D139 (1211 Fern St., C-107)
The Pentagon
Washington D.C., 20301-3081

Attn: Ada Usage

26-14

Section 27
Distributed Processing

A distributed systemi is a collection of processing nodes connected by some limited
band wid th commun ication mnedium. Each node Is composed of one or more processing

elements sharing a single inemory space. Communication between nodes is usually done
by mnessage passing.

%\lost current applications are composed of a few distinct programs that are dis-
i rib-tled to different nodes. 'These programs commnunicate v-ia a message passing pro-

tocRol. There are new machines and new applications being developed for which this

appro ach is Imrpracti cal due to size or the number of processinrg elements. This section

tlisciisses both types of projects and their relevant issues.

HIistoricallyv. there has been aniother class of system,,s called -tightlY coulpled dis-

ri but d s 'ystemns. These sy stemns are composed of several processors that corn-iturricate

by meWans (If shared MnIory. Today these svstenis are usuall v referred to as multipro-

Ces--rs .. Ada is generaflv c insidered I(o slipport hisI pe of Yv Ien \-crv well. ard (1Most

It fese s.%stev s haove art Adca ca palbilit v.

27.1 Current Development Issues

[b e tYpical distributed applicationi todaly ruins ont 9 few nodes and is developed as

onie or in(re >eparatc(progra ms per node. Fitch nlode In Ihese sv' st ems is eit her a single

processor. or a set of process,,ors that sb t re a (-ieto nfio-r ad dress space. A da is well

suited for developinrg si W~kare i oneI no0de, and tlte detail Of in t errI de commnuimicat io
can be easily hidden in one or two packages H&' Z83 and~ D1)7.

lithere are, several areas of interest for this t.\pc of distributed application in A da:

" local area net work interface.

" configi at~ jot maTIagemiCI1

Is dist ri bitted dat a ntanlagernent.

Is migration of data,

" mttigrat ionl of codec arid

* h0(1 bdtan(11 rig.

2--

The most popular communication system for distributed systems is the local area
network (LAN). These networks provide relatively high bandwidth communications be-

tween nodes. The communication software for most of these networks was not designed
for Ada, and some of the Ada interfaces are difficult to work with. There are no inherent

problems in creating a good interface, but a program manager should plan for solving d
few problems when interfacing to an existing product.

Configuration management is difficult when many different programs must interact

in a consistent fashion. Spreading programs across many nodes makes this problem
even more difficult. The user must maintain strict control over the version of each

program loaded on each node to ensure correct system operation. Components such as
communications packages that are used by several programs can further aggravate this

problem. Configuration management is a major factor motivating the single program

approach.

There are two reasons for data to move between nodes, performance and surviv-
ability. Data can be moved to another node to balance the load across the system, as

discussed later. Data may also be replicated on many nodes to provide local data access

(which is faster) and to ensure the data survives the loss of a node. Replicated data.

however, may require very expensive support 'DDM87'.

Migration of code allows a node to do the processing originally allotted to another

node. Allowing multiple nodes to perform any particular processing allows a system to

survive the loss of a node or to balance the load between nodes, thereby increasing overall
throughput, Several issues should be examined if this mechanism is to be considered:

9 How long does it take to move the code from one node to another.

a How much does this cost, and

* How are individual processor capabilities matched with the requirements for each

unit of work?

It is often less expensive to have an idle copy of the software waiting on all possible howst

processors, triggering them as needed.

Load balancing involves shipping data and code between nodes to even the load on
all nodes and improve system throughput. This mechanism can also be used to allocate

extra resources to high priority work. This idea has some merit but is not practical for
all applications. Often, the best way to implement load balancing is to replicate the

software on all possible nodes and trigger execution of each copy by moving data onto
that node. In this case load balancing only requires the transfer of data, not code.

27-2

27.2 Single Program Models

Many people are currently investigating the feasibility of a single program approach
for distributed systems. When a single program spans nodes that do not share a common

memory space, communication delays and communication errors between the elements of
a program become common events. The programming language and associated run-time

system must provide facilities to handle these situations.

The general distributed system issues discussed in Section 27.1 do not lose their im-

portance but become problems that must be solved by the run-time system (as opposed

to the application). While this can create problems for the designers of the run-time

system, it does relieve the application programmers of a significant burden. This shift in
responsibility may be a mixed blessing however; these decisions may affect the capabil-

ities of the final system. Therefore, application programmers may need to retain some
control over the resolution of these issues.

lost single program efforts involve designing a distributed processing language

such a. Argus LISS7 . These languages generally have a construct that serves as a unit
for distribution; for Argus. the Guardian construct. The semantics of this construct

facilitate the actual distribution of program elements to different nodes. Ada does not

have a construct well suited to this purpose. This lack does not mean that Ada is

nadequate for this type of programming, only that the problems encountered will be

nIore difficult.

The first decision in distributing an Ada program is the unit of allocation. Several

options have been suggested

" Tasks.

" Packages.

" ('ompilation units, and

* Ilurestricted.

Choosing either tasks or packages leads to very constrained coding styles. For example.
if a task is chosen as the distribution unit. then each task must be associated with a
processing node. The only way to have any data or code resident on a node is to asso-

ciate this data/code with a task on this node. While this des;gn allows communication

protocols to be built around the rendezvous mechanism, there are nevertheless serious
probllems. First. tasks are created with no logical meaning. and second, code and data

are forced into tasks, even though tasks are not necessarily the most appropriate Ada

construct. (ompilation units are a somewhat better choice but still constrain the dis-

trih|lloni scheme. Honeywell (C0R84 , KJE87') has chosen an intriguing method of

27-3

qI

allocation. They have developed a distribution language that allows the independent

allocation of each part of an Ada program.

Data allocation to a particular node can be done by any of the four methods men-

tioned above. In the first three cases, data is allocated as part of a large unit that

contains both program and data, whereas in the last case, data can be allocated inde-

pendently. Once data is allocated, two questions arise:

" "How does one reference data allocated to another node?", and

" "Is replicated data supported?"

When a procedure on one node references data on another node, problems can occur.

First, the timing behavior of variable references will be unpredictable. More importantly,
there is no mechanism to handle either long delays in response or communication errors

involving the loss of the read request. Special purpose mechanisms can be built into a

distributed run-time system, but they will limit the portability of the resulting software.

'rhe replication of data can have many desirable effects, but the support required

for it to meet Ada semantics would be very expensive in terms of processor power and
system survivability. It may be necessary to introduce a separate piece of software

such as the Distributed Data Management System, discussed in DDMS7 1 , to manage

replicated data objects.

Code must also be allocated to nodes. Any of the four general strategies can be

used. Code replication raises some interesting issues. There are two types of code in

Ada: code that cannot be executed concurrently (the body of a task 9). and code that

can be executed concurrently (everything else). There is no reason not to replicate a sub-

program. but replicating a task could significantly change the meaning of a program20 .

If the unit of allocation is a package and the package contains both procedures and

tasks, replication may be difficult. If the unit of allocation is a task. the concurrency of

associated procedures may be unnecessarily limited. If the unit of allocation is a task

(each task and its related procedures are allocated to a particular node) the concurrency

of associated procedures may be unnecessarily limited. When several task objects are

generated from a single task type, these objects can be on different nodes (and therefore

running concurrently). These objects can be allocated to the same node or different

nodes, however any single object can reside on one and only one node. The implication

is that in order to interact with one of these task objects the code must go through the

communication process on the node on which the task object resides. However, proce-

"'Ada task bodies are not reentrant.
2°Additional code would be needed to make sure that while the task is running on the first node, it

has not also started running on the second node. This check could be very important if the task in
question were protecting a shared resource.

27-4

dures associated with a task type can be replicated on each node on which a task object
of that type is located.

Communication to a remote procedure is similar to referencing a remote variable.
Ada does not prevent it, but there is nothing in Ada to define how communications
delays or errors should be handled.

Calling an entry on a remote task can cause serious problems if communication

errors are encountered. There are several semantic rules about entry calls that can
create problems. For example. the time limit on a timed entry call is defined in terms of
when the call enters the called task's entry queue, not when it is issued. It is not clear
whether a time out could ever be declared due to lost messages or other communication

problems. If the call is delayed by the communication system. it is not clear who should
time the call out, or when the timeout should occur.

The single program approach has many strengths:

" Ease of application development,

" Reliability.

" Maintainability, and

" Portability.

It also has some important difficulties to overcome. Ada is not the perfect language for
this type of approach, especiall'y when timing delays become long and communication
faults are encountered. Ada can be adapted to this environment, however, and significant
work has been done to make this type of development in Ada a reality. Honeywell. among
others, has done significant work in this area.

27-5

Section 28

Real-Time Issues in Ada

Real-time systems are computer systems that interact with ongoing real world
events. These systems differ from other computer applications in that timeliness is as
important as correctness. Historically the production of real-time software has been ap-
proached quite differently: while most software is structured according to its functional
requirements, real-time software is structured according to its timing requirements. This
development method has in turn led to high integration and maintenance costs.

Since the advent of Ada. there has been intense discussion of whether or not real-
time systems can be programmed in Ada. The principal aspects of this discussion focus

on whether traditional development techniques can map into Ada constructs and on
whether Ada implementations can generate efficient code. Ada has the features to sup-
port the traditional real-time implementations, as discussed in Section 28.1. Further
improvements are needed both in the run-time technology and real-time system devel-
opineit methods to meet the severe memory and time constraints. Recently bcientists
hav-e been investigating other ways of developing real-time software to reduce cost and
increase flexibility.

28.1 Evaluation of Cyclic Executive Approach

Classical real-time development involves the production of a cyclic executive. In this
scheme. all processing is assigned specific times in a processing cycle that is executed

repeatedly (see Figure]).

Other traditional real-time development paradigms exist. Their development char-
acteristics are similar to those of a cyclic system, though tlie specific mechanisms may
vary.

28.1.1 Description

A cyclic executive is a mechanism for prescheduling the processing in a system. It
provides a single static processing schedule that has been specifically tuned to meet the
timing requirements of the application. All processing to be performed is assigned time
in a schedule of finite duration. This schedule is repeated at a specified rate, known as
the major cycle. The major cycle is broken down into a number (usually a power of
two) of minor cycles. Each minor cycle has a processing frame assigned to it. A frame
is a list of processing elements to be performed during the associated minor cycle.

There are many variations of cyclic executives. including changing frame assign-

28-1

START MAJXIM CYCLE

&XICUTIVIE

Figure 4: Cyclic Executive Structure

28-2

ments during run-time, alternatives for dealing with frame overrun, and handling inter-
rupt and background activities.

Reasons for Choosing this Approach A cyclic executive approach produces code
that is efficient and predictable. These are key requirements for most real-time sys-
tems. Many real-time systems are based on periodic sampling and control for which
the cyclic executive is ideally suited. Cyclic systems are preplanned; every deadline is
anticipated and necessary resources are allocated in advance. Efficiency is achieved by
making scheduling decisions prior to run-time. Application code can be optimized to
take advantage of the inherent synchronization in cyclic systems. (Synchronization of
access to shared resources is done prior to run-time.) Tining behavior of a cyclic system
is easily analyzed: the time for each frame is the sum oi" the execution times of its com-
ponents: the time limit for each frame is a minor cycle. Finally. the behavior of a cyclic
system is very deternilistic, because the schedule is tle same every time. The timing
of the sysem cannot vary intuch. a highly desirable property for real-time systems.

Ada Implementation Highlights Some varieties of cyclic executives are easily im-
plemnented in Ada. others are more difficult. MacLauren MAC80 and Hood H0086
show how a number of cyclic executives cal be written in Ada. Implementation prob-
lems are encountered when an executive must terminate ,,r suspend overrunning frames.
'These executives can be written if they are adequately supported by the underlying
run-time system. These are excellent candidates for a customized run-time system as
discussed in Edition I Section 3.3.

28.1.2 Strengths and Weaknesses

The cyclic executive approach is very good for producing real-time systems that
work. TFhese systems are unfortunately very expensive. both to produce and especially
to maintain. Small changes in software function or computer hardware can mean massive
changes to the program. All possible error and overload conditions must be foreseen in
advance. Nlodifyingjist a few instructions may change the execution time characteristics
of the program so that the entire software must be recalibrated, It is not uncommon for
seemingly insignificant changes to require multi-million dollar programming efforts (for
example. changing to a new processor that is identical to the old processor, except twice
as fast).

28-3

In summary:

• A cyclic executive allows for precise real-time scheduling,

* Timing analysis is easy to perform and timing errors are detected early when a
frame overruns, and

a Cyclic executives are expensive to produce and very expensive to maintain.

28.2 Evaluation of Data Driven Approaches

Recent work has focused on systems that meet real-time requirements without the
use of a static scheduling structure like a cyclic executive. This work is exploring sev-
eral new technologies: data flow machines, functional languages, parallel processing
languages, etc. Ada itself reflects an attempt to move in this direction.

28.2.1 Description

All efforts in the data driven methods have one goal: to restore the functional con-
cept to real-time systems. The techniques proposed to engineer this restructuring vary
considerably. Functional languages and data flow machines depart from the Von Neu-
mann model of programming by taking the view that data arrival causes an instruction
to be fetched and executed. (Von Neumann machines view the instruction as causing
data to be fetched and operated upon.) The other approaches are less extreme but cen-
ter around similar ideas. In all approaches, the flow of data through a system becomes

an important factor in system scheduling decisions. It is the presence of data which
triggers the scheduler. The analogue in Ada is that tasks which are waiting for data
to be passed through a rendezvous are not eligible for execution. Thus the schedule is

nondeterministic, introducing an element of unpredictability into the system.

Reasons for Choosing this Approach The data driven type of approach creates
real-time software with a functional structure. This software is easier and cheaper to
create and maintain. The principal reasons are that the software is inherently more

flexible and more adaptable. These properties not only lower the cost of lodav's systems.
but without them, many future systems (such as the SDI or NASA's Space Station) will
not be possible. These systems are too large to develop as a single piece; the software

must be able to adapt to an evolving environment.

Ada Implementation Highlights Implementations based on the data driven model
use Ada tasking extensively. Processing is coded as small Ada tasks that receive data.

28-4

I - -I- - -

process it, and send data out as they finish. If references to shared resources (data and
hardware) are allowed at all, they are strictly controlled by monitor tasks. Specialized
run-time system optimizations of elements common to this type of system (such as
monitor tasks) can greatly improve the speed of this type of system (see Edition I
Section 3.3).

28.2.2 Strengths and Weaknesses

This type of system does not suffer from the problems of a cyclic system. The
data driven approach enjoys the benefits of a highly modular structure. It is robust in
the face of changes, is easy to maintain, and easy to adapt to new environments. On
the other hand it lacks the efficiency, temporal determinism. predictability, and ease of
timing verification and testing that distinguish a cyclic system. Its heavy reliance on
Ada tasking incurs the penalty of frequent context switching overhead needed to support
the many rendezvous. As the data load on the system increases, the likelihood of the
system thrashing and becoming nonresponsive increases.

28.3 Temporal Models

The critical nature of timing requirements for real-time systems has motivated re-
search in the area of temporal models.2" By developing sophisticated timing analysis
tools, the process of t tinig the software to meet its timing constraints can be automated.
('urrent investigations center on hybrid systems which use a data driven development
approach and a cyclic run-time approach. The software methodology key lies in the
development of an abstract style of data driven programming, without unnecessarily
constraining the temporal behavior of a program. The key to to the run-time compo-
nent lies in creating a method of transforming code written in this style into a cyclic
executive system. The data driven code provides the flexibility and adaptability, and
the transformation allows the final system to take advantage of the predictability and
determinism of the cyclic structure.

28.3.1 Processing Models

In order for this approach to work. a programming style must be defined which

allows the programmer to specify all temporal properties neceosary for program correct-
ness but which does not otherwise constrain the program's timing. This approach has
been called the processing model. This modcl defines a progrdanmer view of a generic
computer resource. Specific machine capabilities and specific timing requirements are

21 MNodel of the timing characteristics of a piece of software.

28-5

I

introduced during the transformational step, through which detailed timing behavior

is derived. The processing model is similar in many respects to a functional language;

however, it is a development abstraction only, not a run-time model.

28.3.2 Transformational Techniques

Several people have explored transformational programming techniques. Cheatham

CHE84, Boyle B&'M84 , etc. Transformation into a cyclic executive call build on

these techniques combined with the methods used by today's real-time designers to

create cyclic systems. Ward 'WAR78' discusses a system that uses these techniques to

transform very high level specifications of control systems into real-time systems.

A method of tuning software need not be limited to cyclic transformations. While

there may always be a class of real-time systems that require cyclic run-time perfor-
mance, there are other systems that do not require such extreme measures. Many of

these systems would benefit from the flexibility of a run-time scheduler2 2 . These systems

still require tuning. but not to the same extent. For these systems other tuning trans-

formations can be used. These might include replacing monitor tasks with semaphores.

or simplif-ing groups of tasks using program inversion techniques RAJ83 . Using these

techniques, a system can be tuned until the appropriate level of predictability arid effi-

ciency has been reached.

28.4 Run-Time Environment Technology

It is generally recognized that Ada run-time support environments are immature.

Shortfalls exist in performance, functionality, and flexibility. Ada run-time systems
provide the needed support to pass the Ada Compiler Validation ('apabilitv tests but

lack optimizations for memory usage and throughput.

The problem is not an Ada language problem but a run-time support problem.

The requirements for embedded real-time environments are being analyzed in order 1,,

develop an efficient Ada run-time model. For example, by defining in t he run-time system
a standard set of low-level tasking primitives supporting deterministic scheduling, the

programmer gains better control of task scheduling and, therefore, of system timing. An

international workshop was conducted in the United Kingdom in May 1987 to discuss
technical issues and to recommend solutions, where a consensus could be achieved. The

workshop Proceedings WOR87] are available through Ada Letters. The discussions

addressed:
2 A run-time scheduler is that portion of the operating system which determines the order of execution

of application code and system software services.

28-6

" predictable scheduling,

" task%,,g efficiency,

" distributed processing, and

* asynchronous exceptions.

A second Workshop is planned for 1988.

The SIGAda Working Group investigating these issues, ARTEWG, has produced

four documents2 3 :

* .4 Canonical Model and Taxonomy of Ada Run-time Environments,

* The Cataloguf of Ada Run-time Implementation Dependencies,

* The ('atalogue of Int, rface Features and Option for the Ada Run-timc Environ-
me nt. and

* The First Annual Survty of Mission Critical Application Requirements.

These documents may be obtained by writing to:

Mike Kamrad

Honeywell Sysi ems and Research Center
M'S MN17-2351
3660 Marshall St. NE
Minneapolis. MN 55518
(612) 782-7321

mkarnradc' AJPIO.SEI.M('.Nl'.EI)U

on-line information on A R'I'E\W(; activities is available in the directory iartnews on the

AJPO.SEI.CM U.ED, machine.

3 rhf" research which led to these newly released publications is described in Edition 1, Section 3.3.2.

28-7

Section 29

Contractor Evaluation

In evaluating a contractor, certain general qualities should be present. The contrac-

tor should:

" have a complete life-cycle oriented plan for management, configuration manage-

ment, and quality assurance,

" demonstrate a willingness to apply and write reusable components,

" show correctness and usage standards for code,

" practice as well as preach methodologies,

" have good knowledge of software tools and methodologies to promote smooth tran-

sitions between phases, and

" have well-trained and supervised personnel.

Evaluating program development plans or on-going work should not be done in

a vacuum but should be done in the context of known trends from previous program

evaluations. Metrics are being used to evaluate projects, and the resulting information

from these can be used to assess contractor development plans and on-going efforts.

29.1 Software Engineering Exercise

The Software Engineering Exercise (SEE) was developed by MITRE to aid in bidder

evaluation for the Air Force Electronic Systems Division (ESD) {AMN87]. It is used to

assess a contractor s software development approach, give a preview of what will be
developed during the contract, and identify potential problems.

The first time it was applied to a source selection was for the Command Center

Processing and Display System - Replacement (CCPDS-R) program. The government

identified risks that would be associated with the use of Ada, in particular the ability
to use Ada effectively at the early stages of software development.

For the CCPI)S-R program. each offerer was requested to "provide a prototypi-

cal example of the bidder's proposed software development approach." The purpose of

the SEE was to allow the government to assess the contractor's approach through its

demonstration. The contractor was not expected to prototype an actual system but
to prototype the practice of his methodology. The exercise was conducted following

29-1

DoD-STD-2167 guidelines. The government evaluated neither all the phases of the life
cycle nor the support functions such as quality assurance and configuration manage-
mient. The evaluation process stressed the contractor's approach to management, and
to the requirements and design analyses phases, as reflected in the products reqt.ired of

the participants.

MITRE performed a dry run of the Software Engineering Exercise prior to request-
ing it of the offerers. The dry run helped the government determine what to request of
the offerer, what guidelines to give the offerer, and development of technical evaluation
guidelines. Also from the dry run it was reaffirmed that the following three things require
enhanced management attention: requirements analysis, Ada tasking, and managing a
development team.

The following items were stated conclusions learned from the SEE:

" It was an excellent training mechanism for the government participants.

" It very successfully met its stated objectives,

" It resulted in improved SDPs and more knowledgeable offerer staff.

" It required considerable government preparation and careful evaluation, and

" It was a software engineering exercise, not an Ada exercise.

If SEE were used on a different project, it would need to be modified to reflect the
requirements of that particular project. For the CCPDS-R program the SEE was used
during source selection, although several ESD programs are considering incorporating

SEE as a contract task.

29.2 Ada Decision Matrix

Contractor evaluation involves risk assessment along technical, acquisition and eco-
nomic lines. A disciplined, objective method of analyzing the risks of using Ada on a
program is needed. A probability based approach has been developed by The Aerospace
Corporation and documented in BAK84. This work, known as the Ada Decision Ma-
trix. has since been automated. The point of contact is:

Dixie B. Baker
The Aerospace Corporation

M 5-562
El Segundo, CA 90245

(213) 336-4059

29-2

The Ada Decision Matrix IinvOlves a p)roject risk worksheet and a risk priority rating

worksheet. The project risk potential is essentiallY a measure of' the probability of

success, Ii other words the probabilitN that a givenl factor isnot a risk factorfoth

project, By weighting the confidence leves Ii individual criteria with their priority, an

overall con fidericc rat inrg is e in pu ted. This final imber is not an indication of the

* likelihood of success or fali rc of a part iciular project. 11 is ant indication of whether the

(ICJi so n to in se Ada will entail loW or high risk. T his Ad a risk miust then be evaluated

against other. nion Ada- related risk factors previously identified for the project. Ideally

severa! evaluators should c, un IO'c I hV Dci silI Matri x li order to(remove itdi vid al

liases for or against the use of Ada.s

Each workshiet tern is graded oni asc ale off i xe confidenC cc vls, ranging from "very

low- Ila rating of (0.0) to "vcrv high" (a rat rig- of 1 .0). Guidance criteria are provided
to~~~~~~ ai h vlao nslcig t he appropriate rating. Iopi-s addressed icuetool

aviliadiY ald ua~tY stfflig Irlllfl-T.VC cl Managenrent p~rocedures. and cost.

lit order to arrive at the proltIilliv uf -ucccss, for te teel~iical factors, the evaluiator

mlax first vailt to probe fiin icr lv askiirg tle kuids of dctadcle(piestiors found in report-,

,Il Uda orrrpiler evaiii'i';r . I 1i' 1% F'- I alid H H.W16

29.3 Process Evaluation

it is frequenittv im that O old"er vvax-, I, m1et thw ver in-creasing deniand for

..oft ware is to Increase prodictivit-v. hicrecased producti xii v is achieved when higher

fiuailiy 'oftware wit Ii eve rr. > 'ri lloveN.r ruir'liteiiice costs Is produced, Judicious use
,If Met rics hlep" t he I)-- ranr 'uolIfi. I III.u'r1o Ilte tat iof a pro 'em th le produc tivity

of it- stelff. arid the quaNJllty of Ihe 'III p)IllS.

29.3.1 MNetrics

hefi application of pr-duivimt mcasures anid (plalitv standards has lwieci tire focus

of ii ucl at tention latelyN. Iii partlar-1d. 'in Ihli (oiiiext (if con tractor evaluation. The

[)efenISC Science Bo ard I aslk Force FReport oil MIilit arv Soft ware D)5 87., for example.

s;trongly, recomimnenids betI Iic he se ofmet i to assess software quality arid progressarid

Thei r roitirie incorporat in rito corIt racis

I het Air Frce Elect ron c S vstcm D16 i isli 'ii E It)iias developed a set oif softw~are

Cep(IT I r ig Tie t ric I S.- I lI s e01ort Wa Sn IM01it ea ed by' soft wa-re acqu(isit ion goals as well as the

A\ir [orc Syvstem C ommind PfUI lct.\ Assrurailce Initiativc. Thre met rics are designed
to measure technical anld nimaiageiiiewi aspects (If thre coding. testing, anid operational

phases of soft ware (hevelopmient KF N ,7 . 'I liese nuct rics Include:

a program size (in lines of code).

* staffing,

e software complexity,

9 development progress.

e testing progress,

0 computer resource.

a program volatility.

" incremental release.

e code change rate, and

a problem reports.

'I he use of these metrics needs to be tailored according to i the ibectives of a project.
Metrics arc statistics and. therefore. they should not be interpreted as absolute measures
of progress. They are good trend indicators and can aid the government in monitoring

contract health. In all cases, it is important that Ilie government and contractor con-
municate clearly and understand one another's goals and positions. Vhen metrics are

used, both parties must agree on the purpose of tht, metric, the data to be gathered.

and the definition of the metric.

29.3.2 Contractor Capabilities

Prior to contract award, contractor evaluation requires evaluation of the proposed

prcesses to produce the software. The premise is that given a qualitv development
process. at the very least. acceptable software will be written. Assuming that the same
processes were used on other projects. it may be possible to evaluate the quality of those
products in order to extrapolate whether the organization produces reliable software
within cost and budget.

Management control is a cornerstone of the software process. Financial control of

the project alone is not sufficient. Program management is required not only to coordi-
nate resources but also to enforce the use of software engineering standards, methods.
and tools. Management must address the software issues, including methods, reusability.
efficiency, correctness, etc. The management function undertakes planning the software
project, and the manager s responsibilities include both creating a realistic schedule and

29-4

- " lli]Hna a/ a IH iiildH

developing contingency plans. Schedules should not be based on the assumption of per-

fect software after the first compilation. Test failures, tool inadequacies, and resource
mismatches should be accounted for in the planning stages.

The quality goals and acceptance criteria for Ihe project must be established at the

beginning of the project, before a contract is even signed. The contractor's management
plans should show what method-s will be used to achieve which goals and what corrective
actions will be taken when a goal is not met. The metrics to be used to validate

progress on individual goals should be stated. Moreover. the plan should address how
the manager will use the metrics to exercise control over the project, for example, to

revise the estimate to complete. In other words, measuring aspects of a project is not
sufficient; the use of the metrics should be incorporated into the management plan.

The software methods used should be clearly outlined. The methods selected should
he matched to the application area. For example, for extremely complex software. the

nlicthodology needs detailed guidance for analyzing the "'middle part:- it should not be

vague, relying on expertise and magic instead of disciplin. Ilhe methodology proposed

should be suited to the use of Ada as a (lesign and programming language. Specifically.
it should address th allocation of software among tle different classes of Ada program

uits, in particular the choice of packages and tasks.

Fl-h met hodology shmld describe teclnical progress metrics in order to track what

portion of Ihe analysis. design. testing. tc., is culplet. Often such metrics are ex-
pressed in terro (If 1he anager'- idea 4,f \what percent ,f the activity is complete. Such

Triia su res tend t,, be inaccurate. A more a p ~irpria(te mitsaslIre is based on earned value.

for cx ample. n)umber of u hsvysItus designed. N umber (,f modules on which code reading
h as beell done, or rni !st 'Is C((,L (I et ed2I . Mils t onTeS should le tailored to the evolu-
tionarv nature of Ada duhveh ,prniit. Software development phases overlap, making it

hard t,, freeze al! nidules at ai id(entical level of refinement. Crilical modules should
be designed. coded, alld lested first, i niplying that Mhey iay be ready before other

subsystnems are fulix desigiid.
Review ,,of the draft pro duct s andI their rvtienIeents Is 15 needed. This review should be

performed by qualified techni cal persi niln1 : its purpose is to exchange ideas and uncover

errors as early as possible. It is likely that several methods will be needed in order to
cover the entire software developien t Ii fe cycle. The outputs of one niay not necessarily
be in the correct input form for the succeeding method: therefore, careful thought is

required on how these methods will be integrated...\ utomation of methods is desirable
in order to facilitate tracking and updating of the products. Such automation should

include some sort of machine processing of the product in order to verify conformance

24In addit ion to mapl,,r prngrani nilest(nes such as preliminary and critical design reviews, the man-

agement plan should identify individual inini-milestones within tasks, for which "credit" is taken as

they are completed. Examples include mr(,nthlv status reports. internal publication of white papers,

and subsystem start and completicn

29-5

to the rules of the method.

Project personnel should be trained in the process and methods to be used on
the project. The degree and level of training should be appropriate to the individual's
role in the project. For example, the program manager should not take a three week
Ada language course, whereas intensive training in a specific design analysis method is

appropriate for senior project engineers.

Quality assurance control should be exercised through an independent reporting
structure. Quality procedures should be DoD-STD-2167 compliant, addressing the prod-
ucts specific to each phase, including reviews, milestones, code and documents. They
should specify acceptance criteria for the individual software-related items and detail
checklists to be followed to verify that these standards are being met. There should be
procedures in place to evaluate the application of the selected software methodology as
well as to exercise management and technical control over subcontractor performance.

The contractor should have a comprehensive configuration management plan. The
important criterion here is that configuration management be applied to all phases of
the software life cycle. Typically, the source code configurations are carefully managed,
but insufficient care is given to the management of the other elements of the product
being developed. Documentation at all levels should reflect the software as built; for
example, design information and user manuals should be updated when a code change
is incorporated.

29-6

Appendix A
References

AFC871 Ada Education and Training Study . Armed Forces Cornmunications anid
Electronics Association. Volume 1, July 1987.

AMN87 AdaJUG. MeetingNotes, Ada-JOVIAL Users Group. Miamisburg. Oi1
July 13-17, 1987.

A&W87' Altman. N.. and N. \Veidermnan, "Tinming Variation in Dual Loop Bench-
marks.- Technical Report CMU/ISEI-87-TR-21. Software Enigineering lIn-
stitute. Pittsburgh. PA . October 1987.

A.1, 1 ? 7 Altmnil . "Factors Causing Unexpected Variations in Ada B~en ch marks.-
Technical Report CMU !SEI-87-TR-22. Soft ware Engineering Institute.

Pittsburgh. PA. October 1987.

A K SS 7 Amniguet . C.. and A. Schiper. *"Discrctc- Event Simulation 11i Ada.*

Proceedings. IUsing Ada: ACM SIGAda Int ernational Conference, Ada
Letters. ACMI Press. Boston. MA. D)eceimber 1 9S7.

A R1871 ARTEXVG. --The Challenge of Ada Run-time Environments." Ada
Expo Proceedings, Boston, MVA. lCeember 1987.

A D A85 A u sn It. C.N.. N .H. Cohien. i.B. Goodenough. arid R .S. Eanies.

Ada in Practice, Springer-Verlag. New York. 19.5.

BA\ KS1 Baker. D.B.. "Ada Decision Matrix,- Aerospace Hteport No. T1-
0084(44-53 06)-1, Trhe Aerospace Corp)oration. March 19R I

BGA.A8 Brophy. C.E. S. Godfrt-y, .X . Agresti. and V.R. Basili, "~Lessons

Learnied in the Implement ation Phase of a Large Ada Project.
Proceedings- of hle Sixth National Conference on Ada Technology, March

1988.
IB) E87 Boemn Ba rr\ W., "Imnprov-ing Software Prod uct iv~it v7 (Computer. Septein-

her 19S7.
*B& \184 lBoyle, .lamres W . anid \lunagur N. \luralidliaran. "Program Reusabil-

ity Thirough Program T-ransformation,- IEEE Transactions on Software

Enginieering. Vol. SE-1I U No. '-. September. 198.

BRAVN88" Braun. Christine L., "Minimizing Ada Risks Through Bench marki lg."
Proceedings. The Sixt-h National- Conference on AdaTechnology. Arling-

ton. VA. March 14-17, 1988. To be published.

B[-I Bruno. Giorgio. -Using Ada for D~iscrete
Event Si mu lat ion,- Soft ware - Pract ice anid Experience. Vol. 14(7). J ulY
19841.

Al.

rCHIE841 Cheatham, Thomas E.. Jr., "Reusability Through Program Transforma-
tions," IEEE Transactions on Software Engineering, Vol. SE-10, No. 5,

September 1984.

iCDV86 Clapp, Russell M., Louis Duchesneau, Richard A. Volz, Trevor N. MIudge.

and Timothy Schultze, "Toward Real-Time Performance Benchmarks for
Ada." Communications of the ACM, Vol. 29, No. 8, pp. 760-778. August

1986.
COR84 Cornhill. Dennis, "Four Approaches to Partitioning Ada Programs for

Execution on Distributed Targets." Proceedings of the IEEE Conference

on Ada A pplications and Environrnents, 1984.

'C&W76 Curnow, H.J., and B.A. Wichman, "A Synthetic Benchmark."
Computer Journal, p. -13, February 1976.

DAU87 Dausmann. Manfred, "Library Structures for Reusable ('ompo-
nents." Proceedings, Using Ada: ACM SIGAda International Conference.

Ada Letters, ACM Press, Boston. MA. December 1987.

I)ZM87 DiGrazia, Joseph C., J. Ziegler, and R. Mueller, "An Ada I)istributed
Multiprocessor Executive: From Conceptualization to Implementa-
tion," Proceedings, Using Ada: ACM_ SIGAda International Conference.

Ada Letters, ACM Press. Boston, MA December 1987.

!I)DM87 "A Distributed Database Management System for SDI BM/,C3 Applica-

tions. SofTech Document Number 11,12-10, November 25, 1987.

DON87 Donohoe, Patrick, "A Survey of Real-Time Performance Benchmarks for
the Ada Programming Language," Technical Report, CMIV'/SEI-87-IR-

28, Software Engineering Institute, Pittsburgh. PA . October 1987. To be
published.

DSB87 Report of the Defense Science Board Task Force on MilitarY Software.
Office of the Under Secretary of Defense for Acquisition, \Washinglon. D.C..
September 1987.

FOF87 Fukuyama, Shunichi. Naoi Okuse. Masato Fujimaru, Seiichi Yamasaki.
"Empirical Guidelines to Use Ada Effectively," Proceedings, Using Ada:

ACM SIGAda International Conference, Ada Letters, ACM Press, Boston.

MA, December 1987.

H&S87, Harbaugh, Sam, and Greg Saunders, "GKS/Ada Post Mortem.
a Cost Analysis," Proceedings, Using Ada: ACM SIGAda International
Conference. Ada Letters, ACM Press, December 1987.

A-2

HAS88 Hasekioglu, 0., "Queueing Network Modeling and Simulation."
P~roceedings of the Sixth National Conference on AdaTechnology, March
1988.

HHM86] Hogan, M.O., E.P. Hauser, and S.P. Menichiello, "The Definition of a Pro-
duction Quality Ada Compiler," Aerospace Report No. TOR-0086(6902-
03)-i1. The Aerospace Corporation. El Segundo. CA September 1986.

H0086 Hood. Philip, "Ada and Cyclic Runi-time Scheduling," First International
Conference on Ada Programming Language Applications. May 1986.

N188 Kim, 1I~t L.S., "Advanced Ada Tasking Techniques for Motor Simula
tion and C2ontrol, Proceedings of the Sixth National Conference on Ada
Technology, Mlarch 1988.

KJE87 lKamrad. Mike. Hakesh iha. Greg Eisenhainer. and Dennis Cornhill.
"Dist ributed A-da.'" Proceedings of the international Workshop on Real
Ilime Ada Issues. Ada Let ters. Volumne VIL Numnber fi., Fall 1987.

K E.\8- Kean . E.. -i-valuiatioji C'riteria for Ada ('ompilrTs," H. RA[C. September
198 1.

KNS N7 Kent. HiJ.. "Software Reporting NMet rics.ESI)/MITRE Technology
I iitiatuvt-. Al-'C A. Lexivgtouu-Concord (Chapter. Bedford. NIA.., J1une.

1 9S7.
1.1 S87 lskov. Barbara. .- rguus Reference Manual. Programming Methodology

(;rotip. .Me nuo51. MIl IalboratorY for Corn p)utter Science. Camnbridge. M.

March 19S7.
MN&C(87 Nielde. 1E.. and P.G. Cage, "Large SyIstemn Simulation Using Ada"

I-sing Ada: A-\CM SIC Ada International ('onfcrence, Ada Let ters. ACMN
Press. Bus,:m MAN-. lDecemb er19.

NI A CSO MacL a'ii ren. Lee. "EvolVing Tov.ard Ada]in Real-T'i me Syvstems,.'
SI(;PLAN' Notices. 1980.

N\&S87 Nielsen. K.1ell W.. and Ken Shumnate, '"1)CSIgning Large Heal- Time Systemis
w%)it Ada." Coinumuicat ions of the A -CM Vol. 30, No. 8. August 1987.

RAJ83 Rajeex, S.. "On ApplVing- Ada to Heal-Time Systems: Trhe Inversion
Techniquec an(1 Soin(' Examples." T'echnical Heport TP. 148, SofTech. Inc..
Waltham1. MA. March 1983.

R E187 Reifer. [Donald J.. '-Ada's Impact: A Quantitative Assess-
ment .- Proceedlings. Usin~g Ada: ACNl SIC rda I nternational Conference.
Ada Letters. A.CM Press. Boston. MIA. lDe enibler 1987.

A-3

R&Z83, Rossi, G.F., and R. Zicari, "Programming a Distributed System in Ada."
Journal of Pascal and Ada, September/ October 19S3.

Sf087' Shore, RA.. "Discrete- Event Simulation in Ada: Concepts." AdaLetters.
Vol. VII, No. 5, September/ October 1987.

AVAR78' Ward, Stephen A., "An Approach to Real-Tine Conmputationi.~

Proceedings of the IEEE Seventh Texas Conference on Computing SYStemns.
October 1978.

'WEI84' Weicker, Reinhold P., "-Dhrysto-ne: A Synthetic S.Ystems Programmiling
Benchmark," Communications of -the ACM. Vol. 27. No. 10, pp. 1013-
1030, October 1984.

t f"'0R87" Proceedings of the InternationalWorkshop on Real-Time Ada Issues.
May 1987, Ada Letters. ACMI Press. Boston. MIA. Fall 1987.

A-4

Appendix B
Bibliography

Ada Information Clearinghouse Newsletter. (Adaff'). \ol.V \. o 3. D~ecember 19YS7.

A-da for-Soft ware \tanagers, \oluxnes I and 11. U.S. A rmYi (oIn unlIicat I0Iii 1-lect ronics

Cornmand,

AXFSC /AFL('. AFR 8100- 1I1. Supplemient 1. Septemiber 19S7.

Anthes, Gary ff., f13cechrnarking." Federal Computer Week. JHTanr II198

Alt. D).. and Cohen) .N ., -'EStabhig an \da l?,!- inic Hennchrnarliing ('apahilliv.
T Iechical R eport iIP 237. SoFt ech . Inc.. W\alt ham. %I.% . MIarch 1987.

Bachnman. firett. "Design A utomnat ion for Ad a I cvelopmven Under tDuI-S' D1- 2 167
(and Beyond)1.- Proceed i rigs. Using Ad(a: A CNI SIGC.\da I niernat joral' Conference.
Ada Let ters, A\CMN Press. tDeceinher I%7.

C'oles, R.J ., 1.A. Nasput 'vs. K.LI. Iamko. I .F. Scoinders. aiid 11TP. Schultz. Software
Reporting Met rics. Rievision1 2. F SO I HR 1,r). F lectroi ic Sxen DSI Vii [I iion, HIan scom

A PB, NI A. NovemIber 19)ST.

Cohien. Norman H ... Ada as a Second L~anguage, Mic~raw- fll], New York. 98M.

Concept ual D~esign ,fa I ,t riited Data Mianagemnent System. Software Requirements,
IDocumlenil I)i'in1clo N umber 11 12-7).1,. Soflech. II mc.. Walt hamn. NI A. September
1987.

D~oll) SFD- 2167 1 efu'n 5) .t e1m Sft ware I)'velopmrent . June 1985.

DOD4 Diiectlve 3-Wt..1. (ompuler P rograrnniiig Language Policy. A pril 2. 1987.

Do1) Directive 3 40.5,2. Use of Ada in W\eapon Systems. MIarch 30. 1987.

Fremnan. .John and (ou denough . John. Adca A dopt ion HIand book: A Program MIan ager's
Guide. ('NIl SEI-87.T11 9. Soft ware Engineering Institute. Pittsburghi. PA. Mlax
1987.

Fraricl, F'.. -Pioneering NlISSIOi-(ritical Ada Soft ware,"~ Proceedings. - sing Ada: ACMI
SIC Ada international (Conferenuce. Ada Letters. ACMI Press. December 1987.

HQAF/SC"I-. AFR 700-9. March 1985.

Hibbard, P., Hisgen, A., Rosenberg, J., Shaw, M., and Sherman, M., Studies in Ada
Style, Second Edition, Springer-Verlag, New York, 1983.

Kernighan, B.J., and Plauger, P.J., The Elements of Programming Style, Second Edi-
tion, McGraw-Hill. 1978.

Lucas, L., and Dent, D., "Real-Time Ada Demonstration," Proceedings, Using Ada: ACM
SIGAda International Conference, Ada Letters, ACM Press. December 1987.

Maxted, A., and Rowe, J.C.. "An Ada Graphical Tool to Support Software Devel-
opment," Proceedings, Using Ada: ACM SIGAda International Conference. Ada
Letters, ACM Press, December 1987.

Melde. J.E.. and Gage, P.G., "Large System Simulation Using Ada," Proceedings, Using
Ada: ACM SIGAda International Conference, Ada Letters. ACM Press. I)ecem-
ber 1987.

Moreton, T., "Partitioned Ada Libraries as a Basis for Variant Control.' IProceedings.
Using Ada: ACM SIGAda International Conference, Ada Letters, ACM Press, [)e-
cember 1987.

Murray, L.E.. "-A Life-Cycle Oriented Ada Design Language," Proceedings._ 'sing Ada:
ACM SIGAda International Conference. Ada Letters, ACM Press, December 1987.

SAFiAQX. AFR_800-14. September 1986.

Schacht. E.N.. "Ada Programming Techniques, Research, and Experiences on a Fast
Control Loop System," Proceedings. Using Ada: ACM SIGAda International
Conference. Ada Letters. ACM Press, December 1987.

Schefstrcm, D.. "The System-Oriented Editor A Tool for Managing Large Software
Systems." Proceedings, Using Ada: ACM SIGAda International Conference. Ada
Letters. ACM Press. December 1987.

Schultz. W.L., and Chandna, A.. "An Ada Based Approach to Factory Scale MAP Net
work Simulation." Proceedings, Using Ada: ACM SIG.Ada International ('onference.

Ada Letters, ACM Press, December 1987.

Seriin, 0., "MIPS, Dhrystones. and Other Tales," Datamation, June 1. 1986.

Ternes. D.H.. "Developmental Software Configuration and Integration in a Large Ada
Project," Proceedings, Using Ada: ACM SIGAda International Conference. Ada
Letters. ACM Press, December 1987.

Walters, M.D., "Expert Systems Development in LISP and Ada." Proc'edings. Using Ada:
ACM SIGAda International Conference, Ada Letters, ACM Press, December 1987.

B-2

Watts, H. and D. Kitson, Preliminary Report onConducting SEl-Assisted Assessments
of Software Engineering Capability. CMI' /SEI-87-TR- 16, Software Engineering In-
stitute, Pittsburgh. PA, July 1987.

WNaxman. Martin, --Ada, Real Time and the Run-time Environment'" AdaData, Vol.
5, No. 9. pp. 12-14,. September 1987.

Weiderman. N.. Haberin. N.. "Evaluation of Ada En viron ment s.lechnical Report
CML U/SEI-87-TR-1. Software Engineering Institute, Pittsburgh, PA. March 1987.

Weiderman. N.. "Met hodology for the Evaluation of Ada Euvironrnents.- Technical
Report SEI-86-\lI R 2. Soft ware Engineering Institute, Pittsburgh. PA, March 1987.

Williams. Charles B.. 'TIse of the Rational(R) R ltitO(R) Ada Development Environ-
nient for an 113 M (R) Blased 'orniniand and Control System, P Proceedi ngs._'sing A da:
ACM SIC .- da I Ilterllonal Conference. Ada Leitters. AC'M Press. D~ecemnber 1987.

Appendix C
Points of Contact for Ada Information

(In presentation order)

PIN(; Jon S. Squire
W~est inghouse Electric Corporat ion
P.O. Box 746
N1 S 1615
Baltimore, MI) 21203
(301)765- 374 8
benchmark dajpo.sei .cmu i.edu

Production Quality Ada Aerospace Library
Compiler Report Reports Circulation
Report No. TOII-0086(6902-03)- I (M I\ 1-199)

P~.O. Box 92957
Los Angeles, CA 901009

A\pplicat ion of Li Kurt Maschoff
P~roduiction QualitY A-da Space Divisionl
Compiler Report SD) AI.R

P'.O. Box 92960
Los Angeles, CA 90009
(213) 613- 1279
(AV) 833-1279

Real- lime Runl- lime Rich Kavfes
ELiirirnmit St udies Aerospace (orporat ion

(M I "165)
P.O. lBox 92937
Los Angeles. CA 90009
(213) 336-6092

CA V\VG D~ave iDikel
Addaniax Corporationl
7799 Leeshuirg Pike. Suite 900.
lvsow.s Corner, VCA 22043
(703)8417-67.55

C-I

Armonics Benchmarks DACS
RADC/COEI)
Griffiss AFB. -NN' 13-44 1-5700
Attn: Documen, [Data Set Ordering

(315) 336-0937

SDI Simulation The MITRE Corporationl
Burlington Rd

Bedford, MA 017311

(617) 271 -4501

Lessons Learned Briefing A SI1) 1/ YW H
Wright Pat tcrson A FB. OH 45433
(513) 255-7117

DoD Ada Programs Ada Information Clearinghouse
Database 3D139 (1211 Fern St.. (>107)

The Pentagon
Washiington D.C.. 2030] -3081

Attn: Ada ('sagc

ARTEWC'(Activities Mike Kamrad
and Documents Honeywell S ' stems and Research C'enter

NM S MIN 17-2351
3660 Marshall St. N E

Minne(apolis. \1 N .55518
(612) 782-732]

Ada Decision Matrix Dixie B. Baker
The Aerospace (rporatiOnl
N15- 562

El Segundo. CA 90245

(2 13) 336- 1059

(C- 2

